Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
Bài làm :
Ta có :
\(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)
\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(b+a\right)\right]\left[b\left(b+a\right)+c\left(b+a\right)\right]\left[c\left(c+b\right)+a\left(b+c\right)\right]\)\(=\left(a+b\right)\left(c+a\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)\)
\(=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
=> Điều phải chứng minh
Thay 1= 4(ab+bc+ca), Ta có:
\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)
\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)
\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)
\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mà a, b, c là số hữu tỉ
\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ
\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ
Cho 3 số a,b,c thỏa mãn ab + bc + ca = 2017abc và 2017(a + b + c) = 1
Tính A = a2017 + b2017 + c2017
- Nếu một trong các số a;b;c bằng 0, giả sử là a
\(\Rightarrow bc=0\Rightarrow\left\{{}\begin{matrix}b=0\\c=\frac{1}{2017}\end{matrix}\right.\)
\(\Rightarrow A=\frac{1}{2017^{2017}}\)
- Nếu a;b;c đều khác 0
\(ab+bc+ca=2017abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\\\frac{1}{a+b+c}=2017\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\Rightarrow\left[{}\begin{matrix}a=-b;c=\frac{1}{2017}\\b=-c;a=\frac{1}{2017}\\c=-a;b=\frac{1}{2017}\end{matrix}\right.\)
\(\Rightarrow A=\frac{1}{2017^{2017}}\)
Như vậy trong mọi trường hợp ta luôn có \(A=\frac{1}{2017^{2017}}\)
Cho a,b hữu tỉ thỏa mãn a3b+ab3+2a2b2+2a+2b+1=0.Chứng minh (1 - ab) là bình phương của một số hữu tỉ
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Với ab + ac + bc = 1
Ta có: \(a^2+1=a^2+ab+ac+bc=\left(a^2+ab\right)+\left(ac+bc\right)=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
tương tự ta có: \(b^2+1=\left(b+a\right)\left(b+c\right)\)
\(c^2+1=\left(c+a\right)\left(c+b\right)\)
Do đó: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)
\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)
= \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\) (đpcm)
Thay ab+bc+ca=2017 vào ta được:
\(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)
\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(b+a\right)\right]\left[b\left(b+a\right)+c\left(b+a\right)\right]\left[c\left(c+b\right)+a\left(b+c\right)\right]\)\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
= \(\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\)
Vậy \(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)là bình phương của số hữu tỉ.