Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^3=\dfrac{539}{64}\)
hay \(x=\dfrac{7\sqrt{11}}{4}\)
c: \(\Leftrightarrow2^{2x-1}=2^9\cdot2^2=2^{11}\)
=>2x-1=11
hay x=6
d: \(\Leftrightarrow x^{17}-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
hay \(x\in\left\{0;1;-1\right\}\)
a) \(\left(19x+2\times5^2\right):14=\left(13-8\right)^2-4^2\)
\(\Rightarrow\left(19x+50\right):14=5^2-4^2=25-16=9\)
\(\Rightarrow19x+50=126\)
\(\Rightarrow19x=76\Rightarrow x=4\)
Vậy x = 4
b) \(2\times3^2=10\times3^{12}+8\times27^4\)
\(\Rightarrow2\times3^2=10\times\left(3^3\right)^4+8\times27^4\)
\(\Rightarrow2\times3^2=27^4\times\left(10+8\right)\)
\(\Rightarrow18=27^4\times18\)
\(\Rightarrow27^4\times18-18=0\Rightarrow18\times\left(27^4-1\right)=0\)
=> Không thấy biến x đâu cả
c) Ta thấy 33 = 27
\(\Rightarrow3^{2x-5}=3^3\Rightarrow2x-5=3\Rightarrow2x=8\Rightarrow x=4\)
Vậy x = 4
d) \(3^{x+1}-x=80\Rightarrow3^{x+1}=81\)
Ta thấy 34 = 81
\(\Rightarrow3^{x+1}=3^4\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x = 3
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
Ta có : \(\left|2x+4\right|+\left|4x+8\right|=0\left|2x+4\right|+\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|+2.\left|2x+4\right|=\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|\left(1+2\right)=0\)
=> |2x + 4| = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
1. Đề đúng phải là thế này: \(\left|2x+4\right|+\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|=\left|4x+8\right|=0\)
\(\Rightarrow2x+4=4x+8=0\)
\(\Rightarrow x=-\frac{4}{2}=-\frac{8}{4}\)
\(\Rightarrow x=-2\)
2. Sửa lại đề : \(\left|x-5\right|-\left|x-7\right|=0\)
\(\Rightarrow\left|x-5\right|=\left|x-7\right|\)
\(\Rightarrow\orbr{\begin{cases}x-5=x-7\\x-5=-\left(x-7\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-5=-7\\x-5=-x+7\end{cases}}\)
( Loại trường hợp 1)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
3. \(\left|x+8\right|-\left|2x+2\right|=0\)
\(\Rightarrow\left|x+8\right|=\left|2x+2\right|\)
\(\Rightarrow\orbr{\begin{cases}x+8=2x+2\\x+8=-\left(2x+2\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=8\\x+8=-2x-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\3x=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
a) \(3^{x-2}=27\cdot9\)
\(3^{x-2}=3^3\cdot3^2=3^5\)
\(\Rightarrow\)\(x-2=5\Rightarrow x=7\)
b) \(2^{x+1}+2^{x+3}=80\)
\(\Rightarrow2^{x+1}\left(1+2^2\right)=80\)
\(\Rightarrow2^{x+1}\cdot5=80\)
\(\Rightarrow2^{x+1}=16=2^4\)
\(\Rightarrow x+1=4\Rightarrow x=3\)
c) \(2^{2x-3}=16\cdot8\)
\(2^{2x-3}=2^4\cdot2^3=2^7\)
\(\Rightarrow2x-3=7\)
\(\Rightarrow2x=4\Rightarrow x=2\)
d) \(2^{x-2}\cdot2^x=64\)
\(\Rightarrow2^{x-2+x}=64=2^6\)
\(\Rightarrow x-2+x=6\)
\(\Rightarrow2x-2=6\)
\(\Rightarrow2x=8\Rightarrow x=4\)
Giải:
a) \(3^{x-2}=27.9\)
\(\Leftrightarrow3^{x-2}=3^3.3^2\)
\(\Leftrightarrow3^{x-2}=3^5\)
Vì \(3=3\)
Nên \(x-2=5\)
\(\Leftrightarrow x=5+2\)
\(\Leftrightarrow x=7\)
Vậy x = 7.
b) \(2^{x+1}+2^{x+3}=80\)
\(\Leftrightarrow2^{x+1}\left(1+2^2\right)=80\)
\(\Leftrightarrow2^{x+1}.5=80\)
\(\Leftrightarrow2^{x+1}=\dfrac{80}{5}=16\)
\(\Leftrightarrow2^{x+1}=2^4\)
Vì \(2=2\)
Nên \(x+1=4\)
\(\Leftrightarrow x=4-1\)
\(\Leftrightarrow x=3\)
Vậy x = 3.
c) \(2^{2x-3}=16.8\)
\(\Leftrightarrow2^{2x-3}=2^4.2^3\)
\(\Leftrightarrow2^{2x-3}=2^7\)
Vì \(2=2\)
Nên \(2x-3=7\)
\(\Leftrightarrow2x=7+3=10\)
\(\Leftrightarrow x=\dfrac{10}{2}=5\)
Vậy x = 5.
d) \(2^{x-2}.2^x=64\)
\(2^{2x-2}=2^6\)
Vì \(2=2\)
Nên \(2x-2=6\)
\(\Leftrightarrow2x=6+2=8\)
\(\Leftrightarrow x=\dfrac{8}{2}=4\)
Vậy x = 4.
Chúc bạn học tốt!
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
a) \(2^{4x+1}-8^{x+2}=0\)\(\Leftrightarrow2^{4x+1}-2^{3\left(x+2\right)}=0\)
\(\Leftrightarrow2^{4x+1}-2^{3x+6}=0\)\(\Leftrightarrow2^{4x+1}=2^{3x+6}\)
\(\Leftrightarrow4x+1=3x+6\)\(\Leftrightarrow4x-3x=6-1\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(3^2.9^{2x}=27^{x+3}\)\(\Leftrightarrow3^2.3^{2.2x}=3^{3\left(x+3\right)}\)\(\Leftrightarrow3^2.3^{4x}=3^{3x+9}\)
\(\Leftrightarrow3^{2+4x}=3^{3x+9}\)\(\Leftrightarrow2+4x=3x+9\)\(\Leftrightarrow4x-3x=9-2\)\(\Leftrightarrow x=7\)
Vậy \(x=7\)
c) \(8^{2x}.64^2=16^{x+4}\)\(\Leftrightarrow2^{3.2x}.2^{6.2}=2^{4\left(x+4\right)}\)\(\Leftrightarrow2^{6x}.2^{12}=2^{4\left(x+4\right)}\)
\(\Leftrightarrow2^{6x+12}=2^{4x+16}\)\(\Leftrightarrow6x+12=4x+16\)\(\Leftrightarrow6x-4x=16-12\)
\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)