Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)\(\frac{1}{2}x+\frac{1}{8}x=\frac{3}{4}\)
\(\Rightarrow x.\left(\frac{1}{2}-\frac{1}{8}\right)=\frac{3}{4}\)
\(\Rightarrow x.\frac{3}{8}=\frac{3}{4}\)
=>x\(=\frac{3}{4}:\frac{3}{8}\)
=>x=\(2\)
a)\(x+\frac{1}{6}=\frac{-3}{8}\)
=>\(x=\frac{-3}{8}-\frac{1}{6}\)
=>\(x=\frac{-9}{24}-\frac{4}{24}\)
=>\(x=\frac{-13}{24}\)
b)\(2-\left|\frac{3}{4}-x\right|=\frac{7}{12}\)
=>\(\left|\frac{3}{4}-x\right|=2-\frac{7}{12}\)
=>\(\left|\frac{3}{4}-x\right|=\frac{24}{12}-\frac{7}{12}\)
\(\Rightarrow\left|\frac{3}{4}-x\right|=\frac{17}{12}\)
TH1: \(\frac{3}{4}-x=\frac{17}{12}\)
=>x=\(\frac{3}{4}-\frac{17}{12}\)
=>x=\(x=-\frac{2}{3}\)
TH2:\(\frac{3}{4}-x=-\frac{17}{12}\)
=>\(x=\frac{3}{4}-\left(-\frac{17}{12}\right)\)
=>x=\(x=\frac{13}{6}\)
Dzồi nhìu phết
a)\(\left(x-2,5\right)^2=\frac{4}{9}\\ \left(x-\frac{5}{2}\right)^2=\left(\pm\frac{2}{3}\right)^2\\\Leftrightarrow\left\{{}\begin{matrix}x-\frac{5}{2}=\frac{2}{3}\\x-\frac{5}{2}=\frac{-2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{19}{6}\\x=\frac{11}{6}\end{matrix}\right. \)
vậy....
b)\(\left(2x+\frac{1}{3}\right)^3=\frac{-8}{27}\\ \left(2x+\frac{1}{3}\right)^3=\left(\frac{-2}{3}\right)^3\\ 2x+\frac{1}{3}=\frac{-2}{3}\\ x=\frac{-1}{2}\)
vậy...
a) \(2^{4x+1}-8^{x+2}=0\)\(\Leftrightarrow2^{4x+1}-2^{3\left(x+2\right)}=0\)
\(\Leftrightarrow2^{4x+1}-2^{3x+6}=0\)\(\Leftrightarrow2^{4x+1}=2^{3x+6}\)
\(\Leftrightarrow4x+1=3x+6\)\(\Leftrightarrow4x-3x=6-1\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(3^2.9^{2x}=27^{x+3}\)\(\Leftrightarrow3^2.3^{2.2x}=3^{3\left(x+3\right)}\)\(\Leftrightarrow3^2.3^{4x}=3^{3x+9}\)
\(\Leftrightarrow3^{2+4x}=3^{3x+9}\)\(\Leftrightarrow2+4x=3x+9\)\(\Leftrightarrow4x-3x=9-2\)\(\Leftrightarrow x=7\)
Vậy \(x=7\)
c) \(8^{2x}.64^2=16^{x+4}\)\(\Leftrightarrow2^{3.2x}.2^{6.2}=2^{4\left(x+4\right)}\)\(\Leftrightarrow2^{6x}.2^{12}=2^{4\left(x+4\right)}\)
\(\Leftrightarrow2^{6x+12}=2^{4x+16}\)\(\Leftrightarrow6x+12=4x+16\)\(\Leftrightarrow6x-4x=16-12\)
\(\Leftrightarrow2x=4\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
a) \(\frac{4}{9}+x=\frac{-5}{3}\)
\(\Leftrightarrow x=\frac{-5}{3}-\frac{4}{9}\)
\(\Leftrightarrow x=\frac{-15}{9}-\frac{4}{9}\)\(=\frac{-19}{9}\)
Vậy: \(x=\frac{-19}{9}\)
b) \(2,4:\left(\frac{1}{2}.x-\frac{3}{4}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{24}{10}:\left(\frac{1}{2}x-\frac{3}{4}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{3}{4}=\frac{24}{10}:\frac{3}{10}=\frac{24}{10}.\frac{10}{3}\)\(=8\)
\(\Leftrightarrow\frac{1}{2}x=8+\frac{3}{4}=\frac{35}{4}\)
\(\Leftrightarrow x=\frac{35}{4}:\frac{1}{2}=\frac{35}{4}.2=\frac{35}{2}\)
c) \(\frac{x+1}{-8}=\frac{-2}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=\left(-2\right).\left(-8\right)\)
\(\Leftrightarrow\left(x+1\right)^2=16=4^2=\left(-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-5\right\}\)
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
a) Ta có: \(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\Leftrightarrow x\cdot\frac{2}{3}=\frac{1}{10}+\frac{1}{2}=\frac{6}{10}\)
hay \(x=\frac{6}{10}:\frac{2}{3}=\frac{6}{10}\cdot\frac{3}{2}=\frac{18}{20}=\frac{9}{10}\)
Vậy: \(x=\frac{9}{10}\)
b) Ta có: \(5\frac{4}{7}:x=13\)
\(\Leftrightarrow\frac{39}{7}:x=13\)
\(\Leftrightarrow x=\frac{39}{7}:13=\frac{39}{7}\cdot\frac{1}{13}=\frac{3}{7}\)
Vậy: \(x=\frac{3}{7}\)
c) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow\frac{14}{5}x-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=84\)
\(\Leftrightarrow x=84:\frac{14}{5}=84\cdot\frac{5}{14}=\frac{420}{14}=30\)
Vậy: x=30
d) Ta có: \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{-1}{15}\)
hay \(x=\frac{1}{3}:\frac{-1}{15}=\frac{1}{3}\cdot\left(-15\right)=\frac{-15}{3}=-5\)
Vậy: x=-5
e) Ta có: \(8\frac{2}{3}:x-10=-8\)
\(\Leftrightarrow\frac{26}{3}:x=2\)
hay \(x=\frac{26}{3}:2=\frac{26}{3}\cdot\frac{1}{2}=\frac{26}{6}=\frac{13}{3}\)
Vậy: \(x=\frac{13}{3}\)
g) Ta có: \(x+30\%=-1.3\)
\(\Leftrightarrow x+\frac{3}{10}=\frac{-13}{10}\)
hay \(x=\frac{-13}{10}-\frac{3}{10}=\frac{-16}{10}=\frac{-8}{5}\)
Vậy: \(x=\frac{-8}{5}\)
i) Ta có: \(3\frac{1}{3}x+16\frac{3}{4}=-13.25\)
\(\Leftrightarrow x\cdot\frac{10}{3}+\frac{67}{4}=-\frac{53}{4}\)
\(\Leftrightarrow x\cdot\frac{10}{3}=\frac{-53}{4}-\frac{67}{4}=-30\)
\(\Leftrightarrow x=-30:\frac{10}{3}=-30\cdot\frac{3}{10}=\frac{-90}{10}=-9\)
Vậy: x=-9
k) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow x\cdot\frac{14}{5}-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=34+50=84\)
hay \(x=84:\frac{14}{5}=84\cdot\frac{5}{14}=30\)
Vậy: x=30
m) Ta có: \(\left|2x-1\right|=\left(-4\right)^2\)
\(\Leftrightarrow\left|2x-1\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=16\\2x-1=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17}{2}\\x=\frac{-15}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{17}{2};\frac{-15}{2}\right\}\)
a: \(\Leftrightarrow x^3=\dfrac{539}{64}\)
hay \(x=\dfrac{7\sqrt{11}}{4}\)
c: \(\Leftrightarrow2^{2x-1}=2^9\cdot2^2=2^{11}\)
=>2x-1=11
hay x=6
d: \(\Leftrightarrow x^{17}-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
hay \(x\in\left\{0;1;-1\right\}\)