K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

Tổng A có 2016 số hang, nhóm 3 số vào một nhóm ta được 670 nhóm

A = 1+2+22+23+....+22015

A = (1+2+22)+(23+24+25)+.....+(22013+22014+22015)

A = 1.7 + 23.7 +.....+ 22013.7

A= 7.(1+23+....+22013) chia hết cho 7

=> Saoos dư của phép chia A cho 7 là 0
 

20 tháng 9 2017

a, S = 1 + 21+2+3+...+99= 1 + 24950

Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.

b,

    S + 1 = 1 + 1 + 24950= 24951

Vì 2 = 2 => n-1 = 4951

n= 4951 + 1

n= 4952.

                                                        Đáp số : a, 1.

                                                                     b, 4952.

20 tháng 9 2017

mình để a là 7 mà

sao bạn là 9

24 tháng 11 2019

Ta có :

\(A=1+2+2^2+2^3+...+2^{2009}+2^{2010}\)

   \(=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

   \(=1+7+2^4\left(2+2^2+2^3\right)+...+2^{2008}\left(2+2^2+2^3\right)\)

   \(=1+7+2^4.7+2^7.7+...+2^{2008}.7\)

\(\Rightarrow A:7\)dư 1.

#Ngụy

#Fallen_Angel

24 tháng 11 2019

Ta có : A = 1 + 2 + 22 + 23 + .... + 22009 + 22010 

Đặt B = 2 + 22 + 23 + .... + 22009 + 22010 

Khi đó A = 1 + B

Lại có : B = 2 + 22 + 23 + .... + 22009 + 22010 

                = (2 + 22 + 23) + (24 + 25 + 26) +.... + (22008 + + 22009 + 22010)     

                = (2 + 22 + 23)  + 23.(2 + 22 + 23)  + ... + 22007.(2 + 22 + 23

                = 14 + 23.14 + .... + 22007.14

                = 14.(1 + 23 + ... + 22007)

                = 2.7.(1 + 23 + ... + 22007\(⋮7\)

=> \(B⋮7\)

=> (B + 1) : 7 dư 1

=> A : 7 dư 1

Vậy số dư khi A : 7 là 1

20 tháng 12 2016

bài này dễ quá nên mình ko trả lời

20 tháng 12 2016

A=2^0+2^1+...+2^2016

A=1+2*(1+2+2^2)+2^4*(1+2+2^2)+...+2^2014*(1+2+2^2)

A=1+(1+2+4)*(2+2^4+..+2^2014)

A=1+7*(2+2^4+...+2^2014)

Vì 7 chia hết cho 7 nên 7*(2+2^2+..+2^2014) cũng chia hết cho 7, suy ra cộng thêm 1 vào sẽ chia 7 dư 1

Vậy A chia 7 dư 1

Nhớ TK cho mình nha

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7

14 tháng 10 2017

A=(2+22)+(23+24)+...+(289+290)

A=(2x1+2x2)+(23x1+23x2)+...+(289+290)

A=2x(1+2)+23x(1+2)+...+289x(1+2)

A=3x(2+23+...+289) chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

A=(2x1+2x2+2x22)+(24x1+24x2+24x22)+...+(288x1+288x2+288x22)

A=2x(1+2+22)+24x(1+2+22)+...+288x(1+2+22)

A=7x(2+24+288) chia hết cho 7

Mà (3;7)=1  =>A chia hết cho 21

6 tháng 12 2017

A=(2+22)+(23+24)+...+(289+290)

=2(1+2)+23(1+2)+...+289(1+2)

=2.3+23.3+...+289.3

Nên A chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(288+289+290)

=2(1+2+22)+24(1+2+22)+...+288(1+2+22)

=2.7+24.7+...+288.7

Nên A chia hết cho 7 . Vậy A chia hết cho 21

25 tháng 9 2017

A = 2 + 22 + ...... + 260

   = 2(1+2) +.......+ 260 (1 +2)

   = 3( 2 + ....+ 260) nên A chia hết cho 3

A = _________________(Đề)

   = 2( 1 +2 + 22) +...+ 258(1 +2 + 22)

   = 7(2 + ...258) nên A chia hết cho 7

Bạn làm tương tự các câu khác nha

thế chỉ có chó làm được thôi