Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =1+ (2+22+23) + ( 24+25+26 ) + .....+ ( 22008 +22009+22010) = 1+ 7 .( 2+24 + 27 +.....+ 22008)
=> A chia 7 dư 1
ta co :
A=20+21+22+...22009+22010
=>A=(20+21+22)+...+(22008+22009+22010)
=>A=(2^0+2^1+2^2)+...+2^2008.(2^0+2^1+2^2)
=>A=(1+...+2^2008).7 chia het cho 7
=>A chia het cho 7
=>A chia het cho 7 du 0
**** nhe
A = (20+21+22)+23( 20+21+22+23)+27( 20+21+22+23)+....................+22004(20+21+22+23)+22007(20+21+22+23)
= 7 + 15.23 + 15.27 + .......................+ 15.22004 + 15.22007
= 7 + 15.(23 + 27 + .....................+ 22004 + 22007)
A chia cho 15 dư 7
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
\(1+2+2^2+...+2^{2009}+2^{2010}\)
\(1+\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
=\(1+2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)\left(1+2+2^2\right)\)
=\(1+\left(2+2^4+...+2^{2008}\right)7\)
=>\(1+2+2^2+...+2^{2009}+2^{2010}\) chia cho 7 dư 1
Ta có :
\(A=1+2+2^2+2^3+...+2^{2009}+2^{2010}\)
\(=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=1+7+2^4\left(2+2^2+2^3\right)+...+2^{2008}\left(2+2^2+2^3\right)\)
\(=1+7+2^4.7+2^7.7+...+2^{2008}.7\)
\(\Rightarrow A:7\)dư 1.
#Ngụy
#Fallen_Angel
Ta có : A = 1 + 2 + 22 + 23 + .... + 22009 + 22010
Đặt B = 2 + 22 + 23 + .... + 22009 + 22010
Khi đó A = 1 + B
Lại có : B = 2 + 22 + 23 + .... + 22009 + 22010
= (2 + 22 + 23) + (24 + 25 + 26) +.... + (22008 + + 22009 + 22010)
= (2 + 22 + 23) + 23.(2 + 22 + 23) + ... + 22007.(2 + 22 + 23)
= 14 + 23.14 + .... + 22007.14
= 14.(1 + 23 + ... + 22007)
= 2.7.(1 + 23 + ... + 22007) \(⋮7\)
=> \(B⋮7\)
=> (B + 1) : 7 dư 1
=> A : 7 dư 1
Vậy số dư khi A : 7 là 1