Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để 2n + 1 chia hết cho n - 5
<=> n + n - 5 - 5 + 11 chia hết cho n - 5
<=> ( n - 5 ) + ( n - 5 ) + 11 chia hết cho n - 5
=> 11 chia hết cho n - 5
<=> n - 5 là ước của 11
=> Ư(11) = ( 1;11 )
ta có n - 5 = 1 => n = 6 (TM)
n - 5 = 11 => n = 16 (TM)
Vậy n = 6;16
b) 3n - 5 chia hết cho n - 2
Để 3n - 5 chia hết cho n - 2
<=>n + n + n - 2 - 2 - 2 + 1 chia hết cho n - 2
<=>( n - 2 ) + ( n - 2 ) + ( n - 2 ) + 1 chia hết cho n - 2
=> 1 chia hết cho n - 2
<=>n - 2 là ước của 1
=> Ư(1) = 1
ta có n - 2 = 1 => n = 3 (TM)
Vậy n = 3
c) n.n + 5.n - 13 chia hết cho n + 2
<=>2.n + 5.n -13 chia hết cho n + 2
<=>7.n - 13 chia hết cho n + 2
Để 7n -13 chia hết cho n + 2
<=>n+n+n+n+n+n+n+2+2+2+2+2+2+2+1 chia hết cho n+2
<=>(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+1chia hết cho n+2
<=>1 chia hết cho n + 2
<=>n+2 là ước của 1
=>Ư(1) = 1
ta có n + 2 = 1 => n = ( - 1 ) (ktm)
vậy n = - 1
\(n+3⋮n\cdot n-7\)
\(\Rightarrow n+3⋮n^2-7\)
\(\Rightarrow(n+3)(n+3)⋮n^2-7\)
\(\Rightarrow n^2+9⋮n^2-7\)
\(\Rightarrow n^2-7-2⋮n^2-7\)
Mà n2 - 7 chia hết cho n2 - 7
=> \(n^2-7\inƯ(2)\)
\(\Rightarrow n^2-7\in\left\{\pm1;\pm2\right\}\)
Lập bảng :
n2 - 7 | 1 | -1 | 2 | -2 |
n | \(\hept{\begin{cases}-\sqrt{8}\\\sqrt{8}\end{cases}}\)\((\)loại\()\) | \(\hept{\begin{cases}-\sqrt{6}\\\sqrt{6}\end{cases}}\)\((\)loại\()\) | \(\left\{3;-3\right\}\)\((\)chọn\()\) | \(\hept{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)\((\)loại\()\) |
Vậy \(n\in\left\{3;-3\right\}\)
a, (2n-5)\(⋮\)(n-1)
(2n-2)-3\(⋮\)(n-1)
2(n-1)-3\(⋮\)(n-1)
Vì (n-1)\(⋮\)(n-1)=>2(n-1)\(⋮\)(n-1)
Buộc 3\(⋮\)(n-1)=>n-1ϵƯ(3)={1;3}
Với n-1=1=>n=2
n-1=3=>n=4
Vậy n \(\in\){2;4}
a,2n+5\(⋮\)n-2
(2n+4)+9\(⋮\)n-2
2(n-2)+9\(⋮\)n-2
Vì (n-2)\(⋮\)(n-2)=>n-2ϵƯ(9)={1;3;9}
Với n-2=1=>n=3
n-2=3=>n=5
n-2=9=>n=11
Vậy nϵ{3;5;11}
Câu 1: n^2 +1 chia hết cho n+1
=> n^2 + n - n +1 chia hết cho n+1
=> n^2 + n - n - 1 +2 chia hết cho n+1
=> n( n+1 ) -n - 1 +2 chia hết cho n+1
=> n(n+1) - ( n+1) + 2 chia hết cho n+1
=> (n+1)(n-1) +2 chia hết cho n+1
do (n+1)(n-1) chia hết cho n+1
=> 2 chia hết cho n+1
=> n+1 thuộc ước của 2 ={1;2}
TH1 : nếu n+1=1 thì n=0 ( thỏa mãn n thuộc N)
TH2: nếu n+1=2 thì n=1 ( thỏa mãn n thuộc N)
Vậy n thuộc {0;1}
cho mình 1 thì mình làm nốt 2 câu còn lại
mình nhắn tin cho