Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
A = 1 + 3 + 5 + 7 +... + 990
SSH : (990 - 1 ) : 2 + 1 = 495,5
=> tổng : (1 + 990) . 495,5 : 2 = 245520,25 (để xem số cuối có sai k vậy?)
B = 25 + 83 - 23 * 83
= 25 + 512 - 23 * 512 = -11239
C = 600 : {450 : [450 - (4 * 53 - 23 * 52)]}
= 600 : {450 : [450 - (4 * 125 - 8 * 25)]}
= 600 : {450 : [450 - ( 500 - 200)]
= 600 : {450 : [450 - 300]}
= 600 : {450 : 150}
= 600 : 3 = 200
Bài 2 : a) A chia hết cho 2 => x \(\in\){0;2;4;6;8}
b) A chia hết cho 5 => x \(\in\){0;5 }
c) A chia hết cho 2 và 5 => x = 0
d) A chia hết cho 2 nhưng A ko chia hết cho 5 => x \(\in\){2;4;6;8}
Bài 3 tương tự
a, (2n-5)\(⋮\)(n-1)
(2n-2)-3\(⋮\)(n-1)
2(n-1)-3\(⋮\)(n-1)
Vì (n-1)\(⋮\)(n-1)=>2(n-1)\(⋮\)(n-1)
Buộc 3\(⋮\)(n-1)=>n-1ϵƯ(3)={1;3}
Với n-1=1=>n=2
n-1=3=>n=4
Vậy n \(\in\){2;4}
a,2n+5\(⋮\)n-2
(2n+4)+9\(⋮\)n-2
2(n-2)+9\(⋮\)n-2
Vì (n-2)\(⋮\)(n-2)=>n-2ϵƯ(9)={1;3;9}
Với n-2=1=>n=3
n-2=3=>n=5
n-2=9=>n=11
Vậy nϵ{3;5;11}