Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
2n+ 18 \(⋮\) 2n+5
=> \(\left(2n+18\right)-\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(2n+18-2n-5\right)⋮\left(2n+5\right)\)
=> \(13⋮\left(2n+5\right)\)
=> \(\left(2n+5\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
ta có bảng sau
2n+5 | -13 | -1 | 1 | 13 |
2n
|
-18 | -6 | -4 | 8 |
n | -9 | -3 | -2 | 4 |
vây n \(\in\left\{-9;-3;-2;4\right\}\)
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
a, 5n chia hết cho n - 2
=> 5n - 10 + 10 chia hết cho n - 2
=> 5 ( n - 2 ) + 10 chia hết cho n - 2
=> 10 chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 10 ) = { -10 ; - 5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10 }
=> = { - 8 ; - 3 ; 0 ; 1 ; 3 ; 4 ; 7 ; 12 }
Do n \(\in\)N => n = { 0 ; 1 ; 3 ; 4 ; 7 ; 12 }
b) 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2( 2n + 1 ) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n = { -2 ; -1 ; 0 ; 1 }
Do n \(\in\)N => n = { 0 ; 1 }
c) 3n + 2 chia hết cho 2n - 1
=> 2( 3n + 2 ) chia hết cho 2n - 1
=> 6n + 4 chia hết cho 2n - 1
=> 6n - 3 + 7 chia hết cho 2n - 1
=> 3 ( 2n - 1 ) + 7 chia hết cho 2n - 1
=> 7 chia hết cho 2n - 1
=> 2n - 1 \(\in\)Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n = { -3 ; 0 ; 1 ; 4 }
Do n \(\in\)N => n = { 0 ; 1 ; 4 }
a) 5n chia hết cho n-2
=> 5n-10+10 chia hết cho n-2
=> 5(n-2)+10 chia hết cho n-2
=> 5(n-2) chia hết cho n-2 ; 10 chia hết cho n-2
=> n-2 thuộc Ư(10)={1,2,5,10}
=> n thuộc {3,4,7,12}
b) 4n+5 chia hết cho 2n+1
=> 4n+2+3 chia hết cho 2n+1
=> 2(2n+1)+3 chia hết cho 2n+1
=> 2(2n+1)+3 chia hết cho 2n+1 ; 3 chia hết cho 2n+1
=> 2n+1 thuộc Ư(3)={1,3}
=> n thuộc {0,1}
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
a) Để 2n + 1 chia hết cho n - 5
<=> n + n - 5 - 5 + 11 chia hết cho n - 5
<=> ( n - 5 ) + ( n - 5 ) + 11 chia hết cho n - 5
=> 11 chia hết cho n - 5
<=> n - 5 là ước của 11
=> Ư(11) = ( 1;11 )
ta có n - 5 = 1 => n = 6 (TM)
n - 5 = 11 => n = 16 (TM)
Vậy n = 6;16
b) 3n - 5 chia hết cho n - 2
Để 3n - 5 chia hết cho n - 2
<=>n + n + n - 2 - 2 - 2 + 1 chia hết cho n - 2
<=>( n - 2 ) + ( n - 2 ) + ( n - 2 ) + 1 chia hết cho n - 2
=> 1 chia hết cho n - 2
<=>n - 2 là ước của 1
=> Ư(1) = 1
ta có n - 2 = 1 => n = 3 (TM)
Vậy n = 3
c) n.n + 5.n - 13 chia hết cho n + 2
<=>2.n + 5.n -13 chia hết cho n + 2
<=>7.n - 13 chia hết cho n + 2
Để 7n -13 chia hết cho n + 2
<=>n+n+n+n+n+n+n+2+2+2+2+2+2+2+1 chia hết cho n+2
<=>(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+1chia hết cho n+2
<=>1 chia hết cho n + 2
<=>n+2 là ước của 1
=>Ư(1) = 1
ta có n + 2 = 1 => n = ( - 1 ) (ktm)
vậy n = - 1
(TM) là gì thế bạn Đinh Đức Hùng?