K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm: \(x^2=2x-3m\Leftrightarrow x^2-2x+3m=0\) (1)

(P) cắt (d) tại 2 điểm khi (1) có 2 nghiệm \(\Rightarrow\Delta'=1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3m\end{matrix}\right.\)

\(x_1.x_2^2-x_2\left(3m+2x_1\right)=12\)

\(\Leftrightarrow x_1x_2.x_2-3mx_2-2x_1x_2=12\)

\(\Leftrightarrow3mx_2-3mx_2-6m=12\)

\(\Rightarrow m=-2\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2019

Lời giải:
PT hoành độ giao điểm:

\(x+m-(\frac{-1}{2}x^2)=0\Leftrightarrow x^2+2x+2m=0(*)\)

Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ cũng phải có 2 nghiệm phân biệt. Điều này xảy ra khi \(\Delta'=1-2m>0\Leftrightarrow m< \frac{1}{2}\)

PT có 2 nghiệm $x_1,x_2$ thỏa mãn \(x_1x_2=2m\)(định lý Vi-et)

Tung độ giao điểm : $y_1=\frac{-1}{2}x_1^2; y_2=\frac{-1}{2}x_2^2$. Khi đó:

\(y_1y_2=16\) \(\Leftrightarrow \frac{-1}{2}x_1^2.\frac{-1}{2}x_2^2=16\)

\(\Leftrightarrow (x_1x_2)^2=64\)

\(\Leftrightarrow (2m)^2=64\Rightarrow m=\pm 4\). Kết hợp với đk $m< \frac{1}{2}$ suy ra $m=-4$

5 tháng 9 2019

Em cảm ơn ạ

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)

4 tháng 7 2020

Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình \(x^2-2mx+m^2-1=0\)

\(\Delta^`=1>0\)

\(\Rightarrow x_1=m+1,x_2=m-1\)

\(\Rightarrow y_1=m^2+2m+1,y_2=m^2-2m+1\)

\(\Rightarrow y_1-y_2>4\Leftrightarrow4m>4\Leftrightarrow m>1\)

Cofn trường hợp còn lại là m<1 cách giải tương tự