Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay A(1; -9) vào (d), ta có:
-9 = 3m + 1 - m2
<=> -9 - 3m - 1 + m2 = 0
<=> -10 - 3m + m2 = 0
<=> m = 5 hoặc m = -2
b) Lập phương trình hoành độ giao điểm:
x2 = 3mx + 1 - m2
<=> x2 - 3mx - 1 + m2 = 0
Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)
<=> (-3m)2 - 4.1.(-1 + m2) = 0
<=> 9m2 + 4 - 4m2 > 0
<=> 5m2 + 4 > 0\(\forall m\)
Ta có: x1 + x2 = 2x1x2
Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)
<=> 3m = 2(-1 + m2)
<=> 3m = -2 + m2
<=> 3m + 2 - m2 = 0
<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)
pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)
Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)
Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)
Phương trình hoành độ giao điểm: \(x^2=2x-3m\Leftrightarrow x^2-2x+3m=0\) (1)
(P) cắt (d) tại 2 điểm khi (1) có 2 nghiệm \(\Rightarrow\Delta'=1-3m\ge0\Rightarrow m\le\dfrac{1}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3m\end{matrix}\right.\)
\(x_1.x_2^2-x_2\left(3m+2x_1\right)=12\)
\(\Leftrightarrow x_1x_2.x_2-3mx_2-2x_1x_2=12\)
\(\Leftrightarrow3mx_2-3mx_2-6m=12\)
\(\Rightarrow m=-2\)
Lời giải:
PT hoành độ giao điểm:
\(x+m-(\frac{-1}{2}x^2)=0\Leftrightarrow x^2+2x+2m=0(*)\)
Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ cũng phải có 2 nghiệm phân biệt. Điều này xảy ra khi \(\Delta'=1-2m>0\Leftrightarrow m< \frac{1}{2}\)
PT có 2 nghiệm $x_1,x_2$ thỏa mãn \(x_1x_2=2m\)(định lý Vi-et)
Tung độ giao điểm : $y_1=\frac{-1}{2}x_1^2; y_2=\frac{-1}{2}x_2^2$. Khi đó:
\(y_1y_2=16\) \(\Leftrightarrow \frac{-1}{2}x_1^2.\frac{-1}{2}x_2^2=16\)
\(\Leftrightarrow (x_1x_2)^2=64\)
\(\Leftrightarrow (2m)^2=64\Rightarrow m=\pm 4\). Kết hợp với đk $m< \frac{1}{2}$ suy ra $m=-4$
Em cảm ơn ạ