K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

\(\sqrt{5}\)với x = 0

21 tháng 11 2016

mk làm thử rồi, kq sai bạn ạ

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

ÁP DỤNG BĐT CAUCHY TA CÓ

\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\)

\(\Rightarrow\frac{1}{2}\ge\frac{2}{xy}\Leftrightarrow\frac{2}{4}\ge\frac{2}{xy}\)

\(\Rightarrow xy\ge4\)

1 tháng 7 2019

s ngắn z

24 tháng 6 2017

Ta có:\(A=x^2+y^2-x+6y+10\)

   \(\Leftrightarrow A=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9-\frac{33}{4}\)

    \(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\)

             Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

                      \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

       Vậy Min A = \(-\frac{33}{4}\) khi \(x=\frac{1}{2};y=-3\)

24 tháng 6 2017

ta có x^2 >= 0

=> x^2-x >=0

y^2 >= 0

=>y^2 +6y >= 0

=> x^2 + y^2-x+6y>=0

=>A>=10

Vậy Gtnn là 10

16 tháng 1 2018

Đề phải là tìm GTNN chứ bạn

Đặt biểu thức trên = A

Có : A = [(x-1).(x+6)].[(x+2).(x+3)]

= (x^2+5x-6).(x^2+5x+6)

= (x^2+5x)^2 - 36 >= -36

Dấu "=" xảy ra <=> x^2+5x = 0 <=> x=0 hoặc x=-5

Vậy GTNN của A = -36 <=> x=0 hoặc x=-5

Tk mk nha

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

1,\(x^3-9x^2y-10x^2+x-9y=10\)

\(\Leftrightarrow9y\left(x^2+1\right)=x^3-10x^2+x-10\)

\(\Leftrightarrow y=\frac{\left(x^2+1\right)\left(x-10\right)}{9\left(x^2+1\right)}=\frac{x-10}{9}=\frac{x-1-9}{9}=\frac{x-1}{9}-1\)

Thay vào biểu thức tìm đc x,y nhé

Vì \(\)x2\(\ge\)0,9y2\(\ge\)0

=> x2+9y2\(\ge\)0

Dấu "=" xảy ra khi x=y=0

Vậy..........

9 tháng 8 2019

Vì bài dài quá nên mình làm một bài rồi bạn tự làm như vậy nha !  Vì đề này cũng tương tự nhau cả nha bạn !

Nhưng mình không chắc lắm ! Bài này rối quá !

 \(\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)

Biểu thức trên đạt GTLN khi \(\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\) đạt GTLN

                                        \(\Leftrightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|+8\) nhỏ nhất

                                         \(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\) phải nhỏ nhất vì \(\text{ }\left|3x+5\right|\ge0\text{ và }\left|4y+5\right|\ge0\) nên khi cộng với 8 mới có GTNN

Ta có : \(\left|3x+5\right|\ge3x+5\) . Dấu " = " xảy ra khi \(3x+5\ge0\)  \(\Rightarrow\text{ }3x\ge-5\) \(\Rightarrow\text{ }x\ge-\frac{5}{3}\)

             \(\left|4y+5\right|\ge4y+5\).. Dấu " = " xảy ra khi \(4y+5\ge0\)   \(\Rightarrow\text{ }4y\ge-5\)  \(\Rightarrow\text{ }y\ge-\frac{5}{4}\)

Mà \(\left|3x+5\right|+\left|4y+5\right|\) nhỏ nhất \(\Rightarrow\text{ }x,y\text{ nhỏ nhất }\) 

Vậy \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\)

\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+5\right)+\left(4y+5\right)\)

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+4y\right)+10\)

Thay \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\) vào vế phải của biểu thức ta được :

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3\cdot\frac{-5}{3}+4\cdot\frac{-5}{4}\right)+10\)

\(\left|3x+5\right|+\left|4y+5\right|\ge\left(-5+\left(-5\right)\right)+10\)

\(\left|3x+5\right|+\left|4y+5\right|\ge0\)

Vậy min \(\left|3x+5\right|+\left|4y+5\right|=0\)

\(\Rightarrow\text{ min }\left|3x+5\right|+\left|4y+5\right|+8=8\)

\(\Rightarrow\text{ }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\)

\(\Rightarrow\text{ Max }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}=\frac{33}{10}\)

9 tháng 8 2019

Làm mẫu

a) Ta có: \(\left|3x+7\right|\ge0\)

\(\Leftrightarrow4\left|3x+7\right|\ge0\)

\(\Leftrightarrow4\left|3x+7\right|+3\ge3\)

\(\Leftrightarrow\frac{15}{4\left|3x+7\right|+3}\le5\)

\(\Leftrightarrow5+\frac{15}{4\left|3x+7\right|+3}\le10\)

Vậy GTLN của bt là 10\(\Leftrightarrow x=\frac{-7}{3}\)