\(x,y\ne0\).Tìm GTNN của biểu thức:

\(B=\frac{x^2}{y^2}+\f...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-2-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\)

Ta có: \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\Rightarrow\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-1\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)\ge-2\)

\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{x}{y}+\frac{y}{x}-3\right)+3\ge1\)

\(\Rightarrow P\ge1\)

Vậy \(Min_P=1\)

6 tháng 5 2019

\(ĐK:x,y>0\)

14 tháng 11 2016

b)áp dụng Bđt cô si

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)\(\Rightarrow-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge-6\)

\(\Rightarrow P\ge2+\left(-5\right)+5=1\)

Dấu = khi x=y

14 tháng 11 2016

a)Áp dụng Bđt Cô si ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)

Dấu = khi \(x=y\)

 

 

 

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

28 tháng 1 2021

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

28 tháng 1 2021

8

555566655

5665656746565656+5965=?

30 tháng 3 2017

khó thật

30 tháng 3 2017

Áp dụng BĐT AM-GM ta có: 

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\Rightarrow3\left(\frac{x}{y}+\frac{y}{x}\right)\ge6\)

Cộng theo vế 2 BĐT trên ta có:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)\ge2-6=-4 \)

\(\Rightarrow P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge-4+5=1\)

Đẳng thức xảy ra khi \(x=y\)