K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)

=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)

Dấu  "=" xảy ra khi \(x=\sqrt{2}+1\)

c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4

4 tháng 10 2016

   x^2 + 4y^2 - 2x + 10+ 4xy - 4y

= (x^2 + 4xy + 4y^2) - (2x + 4y) + 10

= (x + 2y)^2 - 2 (x + 2y) + 10

Thay x + 2y = 5 vào biểu thức trên ,ta  được :

   5^2 - 2 . 5 + 10

= 25 - 10 + 10

= 25

28 tháng 7 2023

`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`

Vì `(x+1/2)^2 >= 0` với mọi `x`

  `=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`

 `=>` Biểu thức Min `=3/4<=>x=-1/2`

_____________

`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`

  Vì `(x+1)^2 >= 0` với mọi `x`

    `=>(x+1)^2-12 >= -12` với mọi `x`

 `=>` Biểu thức Min `=-1/2<=>x=-1`

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

7 tháng 8 2018

\(1;a,A=x^2+20x+101\)

\(A=x^2+2.10x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -10

Vậy Min A = 1 <=> x = -10

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

3 tháng 3 2017

(x^2+y^2-12y-12x+36)+(5y^2-10y+5)+4=(x-y-6)^2+5(y-1)^2+4>=4

GTNN A=4

khi y=1

x=7

26 tháng 12 2021

a: \(A=4x^2-4x+1-4=\left(2x-1\right)^2-4>=-4\forall x\)

Dấu '=' xảy ra khi x=1/2