Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 - 2*5x + 25 -35
= ( x - 5 ) 2 - 35
Vì ( x- 5 )2 >= 0 nên Amin = -35
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)
\(A=x^2-2xy+6y^2-12x+2y+54\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do: \(\left(x-y-6\right)^2\ge0\forall xy\); \(5\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y-6\right)^2+5\left(y-1\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(\Rightarrow A_{Min}=4\)
Dấu "=" xảy ra khi \(x=7;y=1\)
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Gía trị nhỏ nhất : \(A=4\)Khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=7\end{cases}}\)
\(A=x^2-2xy-12x+6y^2+2y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+2y+45\)
\(=\left(x-\left(y+6\right)\right)^2-y^2-12y-36+6y^2+2y+45\)
\(=\left(x-y-6\right)^2+5y^2-10y+5+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Vậy \(A_{min}=4\)khi \(y=1\)và \(x=7\)
Bài 1 :
a) \(a\ne x\)
b) Tại a= 2 PT
\(\Leftrightarrow\left(5.2-8\right)x=2014\)
\(\Leftrightarrow2x=2014\)
\(\Leftrightarrow x=1007\)
Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)
Bài 2
Ta có :\(f\left(x\right)=2x^2-12x+14\)
\(=2\left(x^2-6x+9\right)-4\)
\(=2\left(x-3\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)
Nhớ K cho tớ nhé
(x^2+y^2-12y-12x+36)+(5y^2-10y+5)+4=(x-y-6)^2+5(y-1)^2+4>=4
GTNN A=4
khi y=1
x=7