K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

\(A=x^2-3x+2\\ \Rightarrow A=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{1}{4}\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(A_{min}=-\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{2}\)

4 tháng 9 2016

a/ A = 3x2 + 6x - 2  => 3A = 9x2 + 18x - 6 = (3x)2 + 2 . 3 . 3x + 32 - 15 = (3x + 3)2 - 15 \(\ge\)-15  => A\(\ge\)5

Đẳng thức xảy ra khi: (3x + 3)2 = 0  => x = -1

Vậy giá trị nhỏ nhất của A là -5 khi x = -1.

b/ B = (x + 1)(2x - 3) + 1 = 2x2 - 3x + 2x - 3 + 1 = 2x2 - x - 2

=> 2B = 4x2 - 2x - 4 = (2x)2 - 2 . 0,5 . 2x + 0,52 - 4,25 = (2x - 0,5)2 - 4,25 \(\ge\)-4,25  => B \(\ge\)-2,125

Đẳng thức xảy ra khi: (2x - 0,5)2 = 0  => x = 0,25

Vậy giá trị nhỏ nhất của B là -2,125 khi x = 0,25.

c/ C = x2 + y2 + 4x - 2y + 1 = x2 + y2 + 4x - 2y + 1 + 22 - 22 = (x2 + 4x + 22) + (y2 - 2y + 1) - 4 = (x + 2)2 + (y - 1)2 - 4 \(\ge\)-4

Đẳng thức xảy ra khi: (x + 2)2 = 0 và (y - 1)2 = 0  => x = -2 và y = 1

Vậy giá trị nhỏ nhất của C là -4 khi x = -2 và y = 1

4 tháng 9 2016

mk làm giúp bn;

A = 3(x+1)2 -3 -2  => GTNN A = -5

B  = 2x2 - x -2 = 2(x - 1/2)2 -1/2 -2   => GTNN B = -5/2

( tisk thì làm tip, k thi nghỉ khỏe)

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1

11 tháng 7 2021

Ta có A = 2x2 + 12x + 1 

\(2\left(x^2+6x+\frac{1}{2}\right)=2\left(x^2+6x+9-\frac{17}{2}\right)=2\left(x+3\right)^2-17\ge-17\)

=> Min A = -17

Dấu "=" xảy ra <=> x + 3 = 0 

<=> x = -3

Vậy Min A = -17 <=> x = -3

b) Ta có B = x2 + 3x + 2 

\(x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{1}{4}=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

=> Min B = -1/4

Dấu "=" xảy ra <=> x + 3/2 = 0 <=> x = -3/2

Vậy Min B = -1/4 <=> x = -3/2 

15 tháng 9 2017

A= 4x-x2= - [ ( x2-4x+4) -4] = 4-(x-2)2 \(\ge\)4  Min A=4 dấu = xảy ra khi x-2=0 \(\Leftrightarrow\)x=2

8 tháng 6 2016

Sorry . I am class 7a

xin lỗi, em lớp 6 vừa mới lên lớp 7 thui
NV
6 tháng 1 2022

\(A=\dfrac{5x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}=\dfrac{1}{x^2}-\dfrac{1}{x}+5=\left(\dfrac{1}{x^2}-\dfrac{1}{x}+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(A_{min}=\dfrac{19}{4}\) khi \(\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\)

DD
9 tháng 10 2021

2) 

\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)

\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)

Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).

Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).

\(B=2a^2+b^2+c^2-ab+ac+bc\)

\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)

\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)

\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)

Dấu \(=\)khi \(a=b=c=0\).

Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).

DD
9 tháng 10 2021

1. 

a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm) 

suy ra đpcm

b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)

c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)

d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)

\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)

3 tháng 3 2017

(x^2+y^2-12y-12x+36)+(5y^2-10y+5)+4=(x-y-6)^2+5(y-1)^2+4>=4

GTNN A=4

khi y=1

x=7