K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

\(A=4x-x^2-3=-\left(x^2-4x+3\right)=-\left(x^2-4x+4-1\right)\)

\(A=-\left(\left(x-2\right)^2-1\right)=-\left(x-2\right)^2+1\le1\forall x\)

\(\Rightarrow GTLN\) của A là 1 khi \(-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

vậy GTLN của A là 1 khi \(x=2\)

\(B=-x^2-4x-2=-\left(x^2+4x+2\right)=-\left(x^2+4x+4-2\right)\)

\(B=-\left(\left(x+2\right)^2-2\right)=-\left(x+2\right)^2+2\le2\forall x\)

\(\Rightarrow GTLN\) của B là 2 khi \(-\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

vậy GTLN của B là 2 khi \(x=-2\)

\(C=2x-2x^2-5=-2\left(x^2-x+\dfrac{5}{2}\right)=-2\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right)\)

\(C=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)

\(\Rightarrow GTLN\) của C là \(-\dfrac{9}{2}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy GTLN của C là \(-\dfrac{9}{2}\) khi \(x=\dfrac{1}{2}\)

\(D=-2x^2-3x+5=-\left(2x^2+3x-5\right)=-\left(\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)-\dfrac{49}{8}\right)\)

\(D=-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

\(\Rightarrow GTLN\) của D là \(\dfrac{49}{8}\) khi \(-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)=0\Leftrightarrow\sqrt{2}x+\dfrac{3}{2\sqrt{2}}=0\Leftrightarrow\sqrt{2}x=\dfrac{-3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{-3}{4}\)

vậy GTLN của D là \(\dfrac{49}{8}\) khi \(x=\dfrac{-3}{4}\)

18 tháng 7 2017

A=4x-x2-3

Ta có: \(A=-\left(x^2-4x+3\right)\)

\(=-\left(x^2-2x-2x+3\right)\)

\(=-\left[x\left(x-2\right)-2\left(x-2\right)-1\right]\)

\(=-\left[\left(x-2\right)\left(x-2\right)-1\right]\)

\(=-\left[\left(x-2\right)^2-1\right]\)

Ta có: \(\left(x-2\right)^2-1\ge-1\forall x\Rightarrow-\left[\left(x-2\right)^2-1\right]\le1\forall x\)

Vậy GTLNA = 1 tại x = 2.

B-x^2-4x-2

Ta có: \(B=x^2-2x-2x-2\)

\(=x\left(x-2\right)-2\left(x-2\right)-6\)

\(=\left(x-2\right)\left(x-2\right)-6\)

\(=\left(x-2\right)^2-6\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge6\forall x\)

Vậy GTNNB = 6 tại x = 2.

C=2x-2x^2-5

Ta có: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\) (làm tương tự 2 câu trên)

Ta có: \(-2\left(x-\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)

Vậy GTLNC = \(-\dfrac{9}{2}\) tại x = \(\dfrac{1}{2}\).

D=-2x^2-3x+5

Ta có: \(D=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\) (tương tự câu C)

Ta có: \(-2\left(x+\dfrac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Vậy GTLND = \(\dfrac{49}{8}\) tại x = \(-\dfrac{3}{4}\).

11 tháng 11 2017

a)

\(\left\{{}\begin{matrix}\left(4x-1\right)^4\ge0\\\left|2x-3y\right|\ge0\end{matrix}\right.\) \(\Rightarrow A\ge25,6\) tự tìm cận

không có Max

b) giống vậy

c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\\\left|4x-3y\right|\ge0\Rightarrow-\left|4x-3y\right|\le0\end{matrix}\right.\)

\(C\le40,5\) tự tìm cận

không có GTNN

14 tháng 3 2017

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

a) ta có |1-2x|>=0

=>3.|1-2x|>=0

=>A>=0-5

A>=-5

dấu "=" xảy ra kh và chỉ khi 1-2x=0

2x=1

x=1/2

Vậy GTNN của A=-5 khi x=1/2

b)ta có -|2-3x|<=0

=>B<=3/4-0

B<=3/4

dấu "=" xảy ra khi và chỉ khi 2-3x=0

3x=2

x=2/3

Vậy GTLN của B=3/4 khi x=2/3

18 tháng 6 2016

a/ 3(1 - x) - 5(2x - 2) = 0 

    => 3 - 3x - 10x + 10 = 0

    => -13x = -13

    => x = 1

     Vậy x = 1

b/ |3x - 2| - 4 = 0 => |3x - 2| = 4  

    Suy ra 2 trường hợp:

  •      3x - 2 = 4 => 3x = 6 => x = 2
  •      3x - 2  = -4 => 3x = -2 => x = -2/3

    Vậy x = 2 , x = -2/3

c/ 2x - x3 = 0 => x.(2 - x2) = 0 

     => x = 0 

    hoặc 2 - x2 = 0 => x2 = 2 => x = \(\sqrt{2}\)  hoặc x = \(-\sqrt{2}\)

         Vậy \(x=\left\{0;\sqrt{2};-\sqrt{2}\right\}\)

d/ x(1 - 2x) + (2x2 - x + 4) = 0 

     => x - 2x2 + 2x2 - x + 4 = 0

     => 4 = 0 (vô lí)

     Vậy vô nghiệm

3 tháng 6 2016

\(a.x=-0,6\)

\(c.x=-11,6\)

Pt nhju ak!!!