Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:bạn dùng BĐT chứa dấu giá trị tđ
bài 2 làm lần lượt là ok
Bài 1:
a)|x-1/4| + |x-3/4|
Áp dụng BĐT |a|+|b|>=|a+b| ta có:
\(\left|x-\frac{1}{4}\right|+\left|x-\frac{3}{4}\right|\ge\left|x-\frac{1}{4}+\frac{3}{4}-x\right|=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\)
Dấu "=" <=>x=1/4 hoặc 3/4
Vậy Amin=1/2 <=>x=1/4 hoặc 3/4
b)|x-1|+|x-2|+|x-5|
Bạn xét từng TH ra
Bài 2:
bn tự lm nhé bài này dễ ẹc mà
a)\(-\frac{21}{x}+\frac{18}{x}=\frac{-21+18}{x}=\frac{-3}{x}\in Z\)
=>-3 chia hết x
=>x thuộc Ư(-3)
=>x thuộc {1;-1;3;-3}
b)\(\frac{2x-5}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=\frac{2\left(x+1\right)}{x+1}-\frac{7}{x+1}=2-\frac{7}{x+1}\in Z\)
=>7 chia hết x+1
=>x+1 thuộc Ư(7)
=>x+1 thuộc {1;-1;7;-7}
=>x thuộc {0;-2;6;-8}
c)\(\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-\left(x-5\right)}{x-1}=\frac{2x+7}{x-1}=\frac{2\left(x-1\right)+9}{x-1}=\frac{2\left(x-1\right)}{x-1}+\frac{9}{x-1}\)\(=2+\frac{9}{x-1}\in Z\)
=>9 chia hết x-1
=>x-1 thuộc Ư(9)
=>....
Còn lại bạn tự làm típ nha khi nào ko làm đc thì nhắn vs mk :)
a)\(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-1=0\\2x-\frac{1}{3}=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x=1\\2x=\frac{1}{3}\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=\frac{1}{6}\end{array}\right.\)
\(A=4x-x^2-3=-\left(x^2-4x+3\right)=-\left(x^2-4x+4-1\right)\)
\(A=-\left(\left(x-2\right)^2-1\right)=-\left(x-2\right)^2+1\le1\forall x\)
\(\Rightarrow GTLN\) của A là 1 khi \(-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy GTLN của A là 1 khi \(x=2\)
\(B=-x^2-4x-2=-\left(x^2+4x+2\right)=-\left(x^2+4x+4-2\right)\)
\(B=-\left(\left(x+2\right)^2-2\right)=-\left(x+2\right)^2+2\le2\forall x\)
\(\Rightarrow GTLN\) của B là 2 khi \(-\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
vậy GTLN của B là 2 khi \(x=-2\)
\(C=2x-2x^2-5=-2\left(x^2-x+\dfrac{5}{2}\right)=-2\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right)\)
\(C=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)
\(\Rightarrow GTLN\) của C là \(-\dfrac{9}{2}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
vậy GTLN của C là \(-\dfrac{9}{2}\) khi \(x=\dfrac{1}{2}\)
\(D=-2x^2-3x+5=-\left(2x^2+3x-5\right)=-\left(\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)-\dfrac{49}{8}\right)\)
\(D=-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
\(\Rightarrow GTLN\) của D là \(\dfrac{49}{8}\) khi \(-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)=0\Leftrightarrow\sqrt{2}x+\dfrac{3}{2\sqrt{2}}=0\Leftrightarrow\sqrt{2}x=\dfrac{-3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{-3}{4}\)
vậy GTLN của D là \(\dfrac{49}{8}\) khi \(x=\dfrac{-3}{4}\)
A=4x-x2-3
Ta có: \(A=-\left(x^2-4x+3\right)\)
\(=-\left(x^2-2x-2x+3\right)\)
\(=-\left[x\left(x-2\right)-2\left(x-2\right)-1\right]\)
\(=-\left[\left(x-2\right)\left(x-2\right)-1\right]\)
\(=-\left[\left(x-2\right)^2-1\right]\)
Ta có: \(\left(x-2\right)^2-1\ge-1\forall x\Rightarrow-\left[\left(x-2\right)^2-1\right]\le1\forall x\)
Vậy GTLNA = 1 tại x = 2.
B-x^2-4x-2
Ta có: \(B=x^2-2x-2x-2\)
\(=x\left(x-2\right)-2\left(x-2\right)-6\)
\(=\left(x-2\right)\left(x-2\right)-6\)
\(=\left(x-2\right)^2-6\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge6\forall x\)
Vậy GTNNB = 6 tại x = 2.
C=2x-2x^2-5
Ta có: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\) (làm tương tự 2 câu trên)
Ta có: \(-2\left(x-\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)
Vậy GTLNC = \(-\dfrac{9}{2}\) tại x = \(\dfrac{1}{2}\).
D=-2x^2-3x+5
Ta có: \(D=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\) (tương tự câu C)
Ta có: \(-2\left(x+\dfrac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Vậy GTLND = \(\dfrac{49}{8}\) tại x = \(-\dfrac{3}{4}\).
a, Để A có giá trị âm => 2x - 8 < 0 => 2x < 8 => x < 4
b, Để B có giá trị không dương => 6 - x < 0 => x > 6
c, Để C có giá trị âm:
Th1: \(\hept{\begin{cases}x-2>0\\2x+6< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\2x< -6\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< -3\end{cases}}\) (vô lý)
Th2: \(\hept{\begin{cases}x-2< 0\\2x+6>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\2x>-6\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>-3\end{cases}\Rightarrow}-3< x< 2\)
d, Ta có: 3x2 + 9x = 3x(x + 3)
Để D có giá trị dương:
Th1: \(\hept{\begin{cases}3x>0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x>-3\end{cases}}\Rightarrow x>0\)
Th2: \(\hept{\begin{cases}3x< 0\\x+3< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0\\x< -3\end{cases}\Rightarrow}x< -3\)
e, Đk: x ≠ 0
Để E có giá trị âm
Th1: \(\hept{\begin{cases}x-2>0\\x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x< 0\end{cases}}\)(vô lý)
Th2: \(\hept{\begin{cases}x-2< 0\\x>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 2\\x>0\end{cases}\Rightarrow}0< x< 2\)
f, Để F mang giá trị dương:
Th1: \(\hept{\begin{cases}2x-5>0\\x-4>0\end{cases}\Rightarrow}\hept{\begin{cases}2x>5\\x>4\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{5}{2}=2,5\\x>4\end{cases}\Rightarrow}x>4\)
Th2: \(\hept{\begin{cases}2x-5< 0\\x-4< 0\end{cases}\Rightarrow}\hept{\begin{cases}2x< 5\\x< 4\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{5}{2}=2,5\\x< 4\end{cases}\Rightarrow}x< 2,5\)
g, Để G có giá trị không âm
Th1: \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}}\Rightarrow-1< x< 3\)
Th2: \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< -1\\x>3\end{cases}}\)(vô lý)
a/ 3(1 - x) - 5(2x - 2) = 0
=> 3 - 3x - 10x + 10 = 0
=> -13x = -13
=> x = 1
Vậy x = 1
b/ |3x - 2| - 4 = 0 => |3x - 2| = 4
Suy ra 2 trường hợp:
Vậy x = 2 , x = -2/3
c/ 2x - x3 = 0 => x.(2 - x2) = 0
=> x = 0
hoặc 2 - x2 = 0 => x2 = 2 => x = \(\sqrt{2}\) hoặc x = \(-\sqrt{2}\)
Vậy \(x=\left\{0;\sqrt{2};-\sqrt{2}\right\}\)
d/ x(1 - 2x) + (2x2 - x + 4) = 0
=> x - 2x2 + 2x2 - x + 4 = 0
=> 4 = 0 (vô lí)
Vậy vô nghiệm