Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)
dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
vậy GTNN của C là -3 khi x=1, y=-1
a) M=-(x-2)2
ta có (x-2)2 >=0 với mọi x
=> -(x-2)2 =<0. Dấu "=" xảy ra <=> (x-2)2=0
<=> x-2=0
<=> x=2
Vậy MaxM=0 đạt được khi x=2
b) Ta có |x+5| >=0 với mọi x
=> -|x+5| =<0 => -|x+5|-2 =<-2
Dấu "=" xảy ra <=> |x+5|=0
<=> x=-5
Vậy MaxN=-2 đạt được khi x=-5
P= - {(x+1)^2+/3-y/+35
vì (x+1)^2>=0;/3-y/>=0=> - { (x+1)^2 -/3-y/ }<=0
................................................. tự giải tiếp
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
Vì ( x - 1 )2 ≥ 0 ∀ x ∈ N
Để A = ( x - 1 )2 + 2010 đạt GTNN <=> x - 1 = 0 => x = 1
Vậy GTNN của biểu thức A = ( x - 1 )2 + 2010 là 2010 tại x = 1
P = 3 - ( x - 1 )2
Ta có : ( x - 1 )2 \(\le\)0 với mọi \(x\inℤ\)
\(\Rightarrow\)3 - ( x - 1 )2 \(\le\)3
Dấu "=" xảy ra khi x - 1 = 0 khi x = 1
Vậy GTLN của P = 3 tại x = 1
ta có (x-1)2 >=0 với mọi x
=> 3-(x-1)2 =<3 hay P =<3
Dấu "=" xảy ra <=> (x-1)2=0
<=> x-1=0
<=> x=1
Vậy MaxP=3 đạt được khi x=1