K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

\(x^3+7y=y^3+7x\)

\(\Leftrightarrow x^3-y^3=7x-7y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(x-y\right)\)

+ Nếu x - y = 0 thì x = y (thỏa mãn)

+ Nếu x - y \(\ne\) 0 thì \(x^2+xy+y^2=7\) (*)

Vì x2 là các số chính phương khác 0 bé hơn 7 nên \(x^2\in\left\{1;4\right\}\)

Với x2 = 1 thì x = 1. Thay x2 vào (*) ta được 1 + y2 + y = 7 \(\Leftrightarrow\) y2 + y = 6, loại

Với x2 = 4 thì x = 2. Thay x2 vào (*) ta được 4 + y2 + 2y = 7 \(\Leftrightarrow\) y2 + 2y = 3 \(\Leftrightarrow\) y = 1

Vậy x,y là các số nguyên dương bằng nhau hoặc x = 2, y = 1

16 tháng 2 2022

bạn ơi tại sao y^2 + y =6 lại loại

23 tháng 3 2015

a, f(x)=( x - 100 )( x- x+ x- x+ x ) - x + 25

=>f(100) = - 75

30 tháng 1 2016

a ) Kết quả là -75 như Quỳnh đã làm 

b) Có:

7y-7x=y3- y3

7*(y-x)=0

y=x=0

Vậy không có các số nguyên dương phân biệt x, y thỏa mãn đề bài.

 

\(x^3-xy=y^3+25\)

Ta có :

\(x^3-y^3=xy+25\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=xy+25\)

Đặt \(x-y=a;\)\(xy=b\)Ta có :

\(a^3+3ab=b+25\)

\(\Leftrightarrow a^3-25=-b\left(3a-1\right)\)

\(\Leftrightarrow27\left(a^3-25\right)⋮3a-1\)

\(\Leftrightarrow27a^3-1-674⋮3a-1\)

Do \(27a^3-1⋮3a-1\Rightarrow674⋮3a-1\)

mà \(674=2.337\)

Nên \(3a-1\in\left\{\pm1;\pm2;\pm337;\pm674\right\}\)

Do \(3a-1⋮3\)( Dư 2 ) 

Nên \(3a-1\in\left\{-1;2;-337;674\right\}\)

\(\Rightarrow a\in\left\{0;1;-112;225\right\}\)

Ta có : \(b=a^3-25̸\)\(1-3a\)

\(\left(a,b\right)=\left(0,-25\right);\left(1,12\right);\left(-112;4169\right);\left(225;-16900\right)\)

Vì \(\left(x-y\right)^2+4xy\ge0\Rightarrow a^2+4b\ge0\)Vì vậy chỉ có a = 1 , y = 12 . \(\Rightarrow x-y=1;xy=12\)

Vậy \(\left(x,y\right)=\left(4,3\right);\left(-3,-4\right)\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

8 tháng 5 2021

1 + x + x2 + x3 = y3 

=> x2 + x + 1 = y3 - x3

mà x2 + x + 1 > 0

=> y3 - x3 > 0

=> x3 < y3 (1)

Lại có 1 + x + x2 + x3 = y3

=> x3 + 6x2 + 12x + 8 - 5x2 - 11x - 7 = y3

=> (x + 2)3 - y3 = 5x2 + 11x + 7

Nhận thấy 5x2 + 11x + 7 > 0 \(\forall x\)

=> (x + 2)3 > y3 (2)

Từ (1)(2) => x3 < y3 < (x + 2)3 => y3 = (x + 1)3 (Vì x;y nguyên)

Khi đó 1 + x + x2 + x3 = (x + 1)3

<=> 1 + x + x2 + x3 = x3 + 3x2 + 3x + 1

<=> 2x2 + 2x = 0

<=> 2x(x + 1) = 0

<=> \(\orbr{\begin{cases}2x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Khi x = 0 => y = 1 

Khi x = -1 => y = 0

Vậy các cặp (x;y) nguyên thỏa mãn là (1;0) ; (-1;0)

21 tháng 11 2015


Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2) 

  • Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
7 tháng 1 2019

x=-1,y=0