Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(100\right)\Leftrightarrow x=100\)
\(\Rightarrow x+1=101\left(1\right)\)
Thay (1) vào ta được
\(f\left(100\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(f\left(100\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^2-x^2-x+25\)
\(f\left(100\right)=-x+25\)
\(f\left(100\right)=-100+25\)
\(f\left(100\right)=-75\)
x3 - 100x2 - 101x + 1 tại x = 101
\(x^3-\left(101x-100x^2+1\right)x=101\)
\(x^2-\left(-9899x^2+1\right)x=101\)
\(x^2--9898x=101\)
\(x=101^2+9898\)
\(x=303\)
\(x^3-100x^2-101x+1\)
\(=x^3-101x^2+x^2-101x+1\)
\(=x^2\left(x-101\right)+x\left(x-101\right)+1\)
\(=101^2\left(101-101\right)+101\left(101-101\right)+1\)
\(=1\)
c)\(4x^4-101x^2+25=0\)
\(\Leftrightarrow4x^4-100x^2-x^2+25=0\)
\(\Leftrightarrow4x^2\left(x^2-25\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\\x=5\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};\frac{-1}{2};5;-5\right\}\)
a)\(\left(2x-1\right)^2=x+5\)
\(\Leftrightarrow4x^2-4x+1=x+5\)
\(\Leftrightarrow4x^2-5x-4=0\)
\(\Leftrightarrow4\left(x^2-\frac{5}{4}x-1\right)=0\)
\(\Leftrightarrow4\left(x^2-\frac{5}{4}x+\frac{25}{64}-\frac{89}{64}\right)=0\)
\(\Leftrightarrow4\left[\left(x-\frac{5}{8}\right)^2-\frac{89}{64}\right]=0\)
\(\Leftrightarrow4\left(x-\frac{5}{8}+\frac{\sqrt{89}}{8}\right)\left(x-\frac{5}{8}-\frac{\sqrt{89}}{8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{8}+\frac{\sqrt{89}}{8}=0\\x-\frac{5}{8}-\frac{\sqrt{89}}{8}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5-\sqrt{89}}{8}\\x=\frac{5+\sqrt{89}}{8}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5-\sqrt{89}}{8};\frac{5+\sqrt{89}}{8}\right\}\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)(1)
Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy\)
Vì \(x^2+y^2\)và x+y là các số nguyên => 2xy là số nguyên
\(x^4+y^4=\left(x^2+y^2\right)-2x^2y^2\)
Vì \(x^4+y^4,x^2+y^2\)là các số nguyên => \(2x^2y^2\)là số nguyên
=> \(\frac{1}{2}\left(2xy\right)^2\)là số nguyên=> \(\left(2xy\right)^2⋮2\)mà 2 là số nguyên tố => 2xy chia hết cho 2=> xy là số nguyên (2)
Từ (1), (2) và x+y là số nguyên
=> x^3+y^3 cũng là số nguyên.
câu a chắc bạn tự làm được
câu b) \(x^2+2x\left(y+1\right)+y^2+2y+1\)
=\(x^2+2xy+2x+y^2+2y+1\)
=\(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1\)
= \(\left(x+y\right)^2+2\left(x+y\right)+1=10000\)
câu c) từ đề bài
=> \(b^2-3b+a^2+3a-2ab=\left(b^2-2ab+a^2\right)-3\left(b-a\right)=\left(b-a\right)^2-3\left(b-a\right)\)
bạn thay b-a vào rồi tính.
câu d: \(Taco:\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3=x^3-y^3-3xy\left(x-y\right)=1\)
theo đề x-y =-1 => \(x^3-y^3+3xy=1\)
câu e tt
câu f:Ta có \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=0\)(2)
mà \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
theo đề \(a^2+b^2+c^2=1\)=> \(2\left(ab+bc+ac\right)=-1=>ab+bc+ac=-\frac{1}{2}\)(1)
bình phương biểu thức 1 lên ta được \(\left(ab+bc+ac\right)^2=\left(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\right)=\frac{1}{4}\)
có a+b+c=0 nên \(a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\)
thay vào giá trj của biểu thức trên vào (2) đến đây bạn chỉ cần tính là ra \(a^4+b^4+c^4\)
a, f(x)=( x - 100 )( x5 - x4 + x3 - x2 + x ) - x + 25
=>f(100) = - 75
a ) Kết quả là -75 như Quỳnh đã làm
b) Có:
7y-7x=y3- y3
7*(y-x)=0
y=x=0
Vậy không có các số nguyên dương phân biệt x, y thỏa mãn đề bài.