K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

(x^2-2+1/x^2 ) +( y^2-2+1/y^2) +(z^2-2+1/z^2) =0

=> (x-1/x)^2 +(y-1/y)^2+(z-1/z)^2=0

suy ra x-1/x=0 

          y-1/y=0

         z-1/z=0

.....

4 tháng 3 2020

Ta có: \(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)

\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)

\(z^2+\frac{1}{z^2}\ge2\sqrt{x^2.\frac{1}{z^2}}=2\)

\(\Rightarrow VT\ge6\)

Dấu "=" khi \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

22 tháng 2 2018

mk sẽ giúp bn

\(VT=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\ge2\sqrt{\frac{x^2}{x^2}}+2\sqrt{\frac{y^2}{y^2}}+2\sqrt{\frac{z^2}{z^2}}=2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

... 

6 tháng 4 2020

cat tuong la ai khong nhan nua may nguoi nay

26 tháng 3 2020

Cần gấp

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

16 tháng 12 2016

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)(đk x+y+z\(\ne0\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=0,5\)

\(\Rightarrow y+z=0,5-x,x+z=0,5-y,x+y=0,5-z\)

\(\Rightarrow\frac{0,5-x+1}{x}=2\Rightarrow\frac{1,5-x}{x}=2\Rightarrow1,5-x=2x\Rightarrow3x=1,5\Rightarrow x=\frac{1}{2}\)

\(\Rightarrow\frac{0,5-y+2}{y}=2\Rightarrow\frac{2,5-y}{y}=2\Rightarrow2,5-y=2y\Rightarrow3y=2,5\Rightarrow y=\frac{5}{6}\)

\(\Rightarrow z=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)

Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=-\frac{5}{6}\)

8 tháng 10 2017

Đặt \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=k\)

Áp dụng TC DTSBN ta có : \(k=\frac{2\left(x+y+z\right)+1+2-3}{x+y+z}=2\)

\(\Rightarrow y+z+1=2x;x+z+2=2y;x+y-3=2z;x+y+z=\frac{1}{2}\)

Từ \(y+z+1=2x\Leftrightarrow x+y+z+1=3x\Leftrightarrow\frac{1}{2}+1=3x\Rightarrow x=\frac{1}{2}\)

Từ \(x+z+2=2y\Leftrightarrow x+y+z+2=3y\Leftrightarrow\frac{1}{2}+2=3y\Rightarrow y=\frac{5}{6}\)

Từ \(x+y-3=2z\Leftrightarrow x+y+z-3=3z\Leftrightarrow\frac{1}{2}-3=3z\Rightarrow z=-\frac{5}{6}\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}\)

3 tháng 8 2016

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\)\(\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=\frac{1}{x+y+z}\)

\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\frac{y+z+1}{x}+1=\frac{\frac{3}{2}}{x}=3\Rightarrow x=\frac{1}{2}\)

Tương tự suy ra \(y=\frac{5}{6},z=-\frac{5}{6}\)

k cho mình nha!