Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)
Ap dung tinh chat day ti so bang nhau ta co
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)
=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x
(1) suy ra \(y+z+1=2x\)
<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
thay vao (*) => y+z=0
tu (1) lai suy ra \(x+z+1=2y\)
<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)
vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\)
<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)
Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)
a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)
Tương đương : 7x - 21 = 5x + 25
7x - 5x = 25 + 21 = 46
2x = 46 suy ra : x = 46/2 = 23
Vậy x = 23
Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)
Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)
Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0
Vậy x = y = z hoặc x2y2z2 = 1
\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)
\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)
\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)
\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)
x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz
Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy
Nhân theo vế các đẳng thức trên ta đc:
(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2
=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0
=>(x-y)(y-z)(z-x)(x2y2z2-1)=0
=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0
=>x=y=z hoặc x2y2z2=1(đfcm)
mk sẽ giúp bn
\(VT=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\ge2\sqrt{\frac{x^2}{x^2}}+2\sqrt{\frac{y^2}{y^2}}+2\sqrt{\frac{z^2}{z^2}}=2+2+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
...