Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)
Coi phương trình trên có ẩn là x.
Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)
Thay vào từng giá trị nguyên của y để tìm x=)
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!
Giả sử pt có nghiệm nguyên x, y
\(x^2+2y^2+2xy+3y-4=0\)
\(4x^2+8y^2+8xy+12y=16\)(nhân 4 vào 2 vế)
\(\left(2x+2y\right)^2+\left(4y^2+2.2y.3+9\right)=25\)
\(\left(2x+2y\right)^2+\left(2y+3\right)^2=25\)
Do x,y nguyên => (2x+2y)2 là số chính phương chẵn và (2y+3)2 là số chính phương lẻ
phân tích 25 thành tổng 2 số cp trong đó 1 lẻ 1 chẵn dc 25=16+9=0+25
TH1: (2x+2y)2=16(1);(2y+3)2=9 => \(\orbr{\begin{cases}2y+3=3\\2y+3=-3\end{cases}}\)<=>\(\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)Thay từng TH của y vào (1) để tìm x ra \(\left(x;y\right)\in\left\{\left(2;0\right),\left(-2;0\right),\left(5;-3\right),\left(1,-3\right)\right\}\)
TH2: (2x+2y)2=0(2);(2y+3)2=25 (BẠN TỰ GIẢI NHÉ)
Bài này nhiều nghiệm