Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
Lời giải:
PT $\Leftrightarrow 3(x^2-6x+9)+6y^2+2z^2+3y^2z^2=33$
$\Leftrightarrow 3(x-3)^2+6y^2+2z^2+3y^2z^2=33$
$\Rightarrow 2z^2\vdots 3$
$\Rightarrow z\vdots 3$
Lại có:
$2z^2=33-3(x-3)^2-6y^2-3y^2z^2\leq 33$
$\Rightarrow z^2<17\Rightarrow -4\leq z\leq 4$ (do $z$ nguyên)
Mà $z\vdots 3$ nên $z\in \left\{\pm 3; 0\right\}$
Nếu $z=0$ thì:
$3(x-3)^2+6y^2=33$
$\Leftrightarrow (x-3)^2+2y^2=11$
$\Rightarrow y^2\leq \frac{11}{2}<9\Rightarrow -3< y< 3$
$\Rightarrow y\in \left\{\pm 2; \pm 1; 0\right\}$
Thay từng giá trị vào tìm $x$.
Nếu $z=\pm 3$ thì:
$3(x-3)^2+15y^2=15$
$\Rightarrow 15y^2\leq 15$
$\Rightarrow y^2\leq 1\Rightarrow -1\leq y\leq 1$
$\Rightarrow y\in \left\{\pm 1; 0\right\}$
Thay từng giá trị vào tìm $x$.
Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)
* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)
\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)
\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)
\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)
\(\Rightarrow x=6\)hoặc \(x=0\)
Có các nghiệm \(\left(x=6;y=1;z=0\right)\) \(\left(x=6;y=-1;z=0\right)\)
\(\left(x=0;y=1;z=0\right)\) \(\left(x=0;y=-1;z=0\right)\)
\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)
* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)
\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)
\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)
\(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)
\(z^2>9\Rightarrow z^2\ge6^2=36\)
Ta có \(3\left(x-3\right)^2+2z^2>33\)(loại)
Nghiệm nguyên của ptrình là:
\(\left(x=6;y=1;z=0\right)\) \(\left(x=6;y=-1;z=0\right)\)
\(\left(x=0;y=1;z=0\right)\) \(\left(x=0;y=-1;z=0\right)\)
biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy
(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)
\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)
Ta có: \(\left(x+y+1\right)^2\ge o\)
Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)
Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)
Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài
Kết quả: x=0; y=-1
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!