Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{1}{2}\right)\left(x+\frac{3}{4}\right)>0\)
th1 :
\(\hept{\begin{cases}x-\frac{1}{2}>0\\x+\frac{3}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>-\frac{3}{4}\end{cases}\Rightarrow}x>\frac{1}{2}}\)
th2 :
\(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+\frac{3}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -\frac{3}{4}\end{cases}\Rightarrow}x< -\frac{3}{4}}\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)
Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)
TH1 : \(x>0\)thì \(2x-1>0\)
\(2x>1\Rightarrow x>\frac{1}{2}\left(Tm\right)\)
TH2 : \(x< 0\)thì \(2x-1< 0\)
\(2x< 1\Rightarrow x< \frac{1}{2}\)kết hợp với ĐK \(\Rightarrow x< 0\)
Ta có:
x+1xx+1x là số nguyên
⇒x+1⋮x⇒x+1⋮x
⇒1⋮x⇒1⋮x
⇒x∈Ư(1)⇒x∈Ư(1)
⇒x=1 x=−1
mk tin rằng bn đọc rùi sẽ hiểu
Hok tốt
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
Ta có: 1/x là số nghịch đảo của x
Để 1/x là số Nguyên thì x phải là nghịch đảo của một số nguyên
Hay x có dạng 1/a với a là một số nguyên lúc đó 1/x=a
\(-\dfrac{1}{2}=\dfrac{-1\times5}{2\times5}=-\dfrac{5}{10}\\ -\dfrac{1}{3}=\dfrac{-1\times5}{3\times5}=-\dfrac{5}{15}\\ -\dfrac{5}{10}>-\dfrac{5}{11};-\dfrac{5}{12};-\dfrac{5}{13};-\dfrac{5}{14}>-\dfrac{5}{15}\\ \Rightarrow a\in\left\{-\dfrac{5}{11};-\dfrac{5}{12};-\dfrac{5}{13};-\dfrac{5}{14}\right\}\)