K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)

Khi đó x + y + z = 18 

<=> 3k + 1 + 4k + 2 + 5k + 3 = 18

=> 12k + 6 = 18

=> 12k = 12

=> k = 1

=> x = 4 ; y = 6 ; z = 8

11 tháng 8 2020

                                                  Bài giải

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)

\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)

\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)

9 tháng 12 2019

t 27 tháng 7 2017 lúc 13:57

2x/3 =3y/4 =4z/5 ⇒60.2x/3 =60.3y/4 =60.4z/5 ⇒40.x=45.y=48.z

40.x = 45.y => x/45 = y/40 => x/9 = y/8 => x/18=y/16 [1]

45.y = 48.z => y/48 = z/45 => y/16 = z/15 [2]

Từ [1] và [2] => x/18 = y/16 = z/15 = [x+y+z]/[18+16+15] = 49/49 = 1

=> x= 18 ; y= 16 ; z= 15

Vậy x= 18 ; y= 16 ; z= 15

9 tháng 12 2019

Thanks bạn nhiều

24 tháng 10 2020

\(\frac{x}{y}=\frac{4}{9}\Rightarrow x=\frac{4y}{9}\) thay vào \(3x-2y=12\)

\(\Rightarrow3.\frac{4y}{9}-2y=12\Rightarrow y=-2\) thay vào \(x=\frac{4y}{9}=\frac{4.\left(-2\right)}{9}=-\frac{8}{9}\)

24 tháng 10 2020

Thanks bạn nha !!!

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)

Vậy ....

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

10 tháng 3 2016

x-1/2=y-2/3=z-3/4 => x-1/2 = 2y-4/6 = 3z-9/12 

Theo tính chất dãy tỉ số bằng nhau ta có

x-1/2=2y-4/6=3z-9/12 =[(x-1) - (2y-4) + (3z-9)] / 2+6+12

=[(x-2y+3z)-(1-4+9)] / 20

=-10-6 /20= -16/20=-4/5

Ta có x-1/2=-4/5 => x-1=-8/5=> x=-3/5

Còn lại bạn tự làm nha (Nếu mình làm đúng thì k cho mình)