K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

TH1: 2x-5<0; x+1>0

=>x<2,5;x>-1

=>-1<x<2,5

Mà x thuộc Z

=>x thuộc {0;1;2}

TH2: 2x-5>0; x+1<0

=>x>2,5; x<-1 (Vô lí)

Vậy x thuộc {0;-1;2}.

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
8 tháng 1 2016

S = {0; 1}           

9 tháng 11 2014

dấu "/"là phần nha

1/2-(1/3+3/4)<x<8/3(1/5+3/4)

-7/12<x<103/60

-7/12<x/1<103/60

-35/60<60x/60<103/60

ta có:-35<60x<103

suy ra:60x thuộc {0,60}

suy ra:x thuộc {0,1}

                           KẾT QUẢ:  X=0 hoặc 1           
 

16 tháng 1 2016

0 hoặc **** đấy chứng nữa minh giải bài cho

2 tháng 8 2015

ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)<0\)

suy ra hai số này là trái dấu vậy một số là dương và mootj số là âm 

mà \(\left(x+\frac{5}{4}\right)>\left(x-\frac{9}{7}\right)\)

suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm

x+5/4>0suy ra x>0-5/4 suy ra x>-5/4

x-9/7<0 suy ra x<9/7+0 suy ra x<9/7

-5/4<x<9/7

 

16 tháng 10 2016

có x\(^{^2}\)luôn \(\ge\) 0 với mọi x

=> 2\(x^2\)+ 3 > 0 với mọi x

Để biểu thức > 0 =>( \(x^2\)- 3)(\(x^2\)- 5) < 0

.Có \(x^2\)- 3 > \(x^2\)- 25

=> \(x^2\)- 25 < 0 => \(x^2\)< 0 =>\(x^2\)< 25

=> -5 > x > 5

10 tháng 10 2015

+) 2x+1=0

=> 2x=-1

=> x=\(-\frac{1}{2}\).

+) 3x-9/2=0

=> 3x=9/2

=> x=9/2 : 3

=> x=\(\frac{3}{2}\).

\(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}\).

13 tháng 8 2016

2 phan tu

11 tháng 10 2015

Để \(\left(2x+1\right)\left(3x-\frac{9}{2}\right)=0\) thì 2x+1=0 hoặc 3x-9/2=0

TH1: 2x+1=0

=> 2x=-1

=> x=-1/2

TH2: 3x-9/2=0

=> 3x=9/2

x=9/2:3=3/2

 

11 tháng 10 2015

S={-1/2;3/2}

nho ****

7 tháng 8 2016

:
\(\left|x-2,5\right|+\left|3,5-x\right|=0\)

ta có \(\left|x-2,5\right|\ge0\)

            \(\left|3,5-x\right|\ge0\)

nên \(\left|x-2,5\right|+\left|3,5-x\right|\ge0\)

để \(\left|x-2,5\right|+\left|3,5-x\right|=0\) thì \(\hept{\begin{cases}x-2,5=0\\3,5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)(vô lí)

vì x không thể xuất hiện 2 lần trong 1 trường hợp vậy x có 0 phần tử thỏa mãn yêu cầu đề bài đã cho.

7 tháng 8 2016

\(\left|x-2,5\right|\ge0\)

\(\left|3,5-x\right|\ge0\)

\(\Rightarrow\left|x-2,5\right|+\left|3,5-x\right|\ge0\)

Do vậy 

\(\hept{\begin{cases}\left|x-2,5\right|=0\\\left|3,5-x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)( vô lý )

Vậy có 0 phần tử của tập hợp các số x thỏa mãn đề bài