Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> x-2,5 = 0và 3,5-x = 0
=> x = 2,5 và x = 3,5
=> ko có x thỏa mãn
|x-2,5|+|3,5-x|=0
=>|x-2,5|=0 và |3,5-x|=0
=> x=2,5 và x=3,5
=>mâu thuẫn giữa 2,5 và 3,5
nên ko tìm đc x
Đáp án là:0
gõ số 0 vào nhé
Ta thấy: \(\begin{cases}\left(2x+1\right)^2\ge0\\\left|y+1,2\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^2+\left|y+1,2\right|\ge0\)
Để \(\left(2x+1\right)^2+\left|y+1,2\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^2=0\\\left|y+1,2\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y+1,2=0\end{cases}\)
\(\Rightarrow\begin{cases}2x=-1\\y=-1,2\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=-1,2\end{cases}\)
\(\Rightarrow x+y=-\frac{1}{2}+\left(-1,2\right)=-1,7\)
Ta có |x| ≥ 0, nên các câu:
a) |-2,5| = 2,5 đúng
b) |-2,5| = -2,5 sai
c) |-2,5| = -(-2,5) = 2,5 đúng
1,Các khẳng định đúng là :
a,\(|-2,5|=2,5\)Đúng
c,\(|-2,5|=-\left(-2,5\right)\)Đúng
2,Tìm x:
a, \(|x|=\dfrac{1}{5}\Rightarrow x=\dfrac{1}{5}hoặc-\dfrac{1}{5}\)
b, \(|x|=0,37\Rightarrow x=0,37hoặc-0,37\)
c,\(|x|=0\Rightarrow x=0\)
d,\(|x|=1\dfrac{2}{3}\Rightarrow x=1\dfrac{2}{3}hoặc-\left(1\dfrac{2}{3}\right)\)
nhớ like mình nha
:
\(\left|x-2,5\right|+\left|3,5-x\right|=0\)
ta có \(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
nên \(\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
để \(\left|x-2,5\right|+\left|3,5-x\right|=0\) thì \(\hept{\begin{cases}x-2,5=0\\3,5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)(vô lí)
vì x không thể xuất hiện 2 lần trong 1 trường hợp vậy x có 0 phần tử thỏa mãn yêu cầu đề bài đã cho.
\(\left|x-2,5\right|\ge0\)
\(\left|3,5-x\right|\ge0\)
\(\Rightarrow\left|x-2,5\right|+\left|3,5-x\right|\ge0\)
Do vậy
\(\hept{\begin{cases}\left|x-2,5\right|=0\\\left|3,5-x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)( vô lý )
Vậy có 0 phần tử của tập hợp các số x thỏa mãn đề bài