\(\left(2x^2+3\right)\left(x^2-3\right)\left(x^2-25\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

có x\(^{^2}\)luôn \(\ge\) 0 với mọi x

=> 2\(x^2\)+ 3 > 0 với mọi x

Để biểu thức > 0 =>( \(x^2\)- 3)(\(x^2\)- 5) < 0

.Có \(x^2\)- 3 > \(x^2\)- 25

=> \(x^2\)- 25 < 0 => \(x^2\)< 0 =>\(x^2\)< 25

=> -5 > x > 5

4 tháng 9 2019

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
6 tháng 10 2015

Có: x2 - 10 < x2 - 7 < x2 - 4 < x2 - 1

Để tích trên < 0

TH1: (x2 - 1); (x2-4); (x2 - 7) cùng dương và (x2 - 10) âm

=> x2 - 10 < 0 và x2 - 7 > 0

=> x2 < 10 và x2 > 7

=> 7 < x2 < 10

=> x2 = 9 

=> x = + 3 (TM)

TH2: (x2 - 1) dương và (x2 - 4); (x2 - 7); (x2 - 10) cùng âm

=> x2 - 1 > 0 và x2 - 3 < 0

=> x2 > 1 và x2 < 3

=> 1 < x2 < 3 (vô lí)

KL: x = + 3

6 tháng 10 2015

Xét từng trường hợp 1

VD: x2-1 <0 và x2-4 > 0 hay ngược lại

Xét tất cả các thừa số rồi chọn kết quả là số nguyên

30 tháng 1 2018

Xét thấy tích của 4 số là một số âm

=> Có 1 hoặc 3 số là 1 số âm

Xét từng trường hợp, ta có:

+ Có một số âm: 

x2 - 10 < x2 - 7 => x2 - 10 < 0 < x2 - 7

=> 7 < x2 < 10

=> x2 = 9

=> x = {3;-3}

+ Có 3 số là số âm, 1 số dương:

x2 - 4 < x2 - 1 

=> 1 < x2 < 4

=> x không có giá trị thỏa mãn

Vậy x = -3 và x = 3

6 tháng 4 2018

a)   \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

\(=2x+1\)

b)      \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)

\(\Leftrightarrow\)\(2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

20 tháng 2 2020

Lời giải:

Tích của bốn số \(x^2-10,x^2-7,x^2-4,x^2-1\) là số âm nên phải có một hoặc ba số âm . Ta có : \(x^2-10< x^2-7< x^2-4< x^2-1\). Xét hai trường hợp :

Trường hợp 1: Có một số âm,ba số dương:

\(x^2-10< 0< x^2-7\Rightarrow7< x^2< 10\Rightarrow x^2=9\left(x\inℤ\right)\Rightarrow x=\pm3\)

Trường hợp 2: Có ba số âm,một số dương

\(x^2-4< 0< x^2-1\Rightarrow1< x^2< 4\)

Do \(x\inℤ\)nên không tồn tại số x

Vậy x = \(\pm\)3.

20 tháng 2 2020

Giải từng TH là ra, nhớ rằng âm nhân âm ra dương, âm nhân dương ra âm, để pt trên <0 thì cần 1 cặp dương, 1 cặp âm