Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
a) thay vào hàm số y=f(x)=-2x+3, ta đc:
f(-2)=-2.(-2)+3=7
f(-1)=-2.(-1)+3=5
f(0)=-2.0+3=3
\(f\left(-\frac{1}{2}\right)=-2.\left(-\frac{1}{2}\right)+3=4\)
\(f\left(\frac{1}{2}\right)=-2.\frac{1}{2}+3=2\)
\(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}\)
\(=\frac{3^5-3^4}{3^6+3^5}=\frac{3^4.\left(3-1\right)}{3^5\left(3+1\right)}\)
\(=\frac{3^4.2}{3^5.4}=\frac{3^4.2}{3^4.3.4}=\frac{2}{12}=\frac{1}{6}\)
P/s: Hoq chắc ạ (: Ms lp 6 lm đại
\(\frac{x}{2}=\frac{y}{3}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\)
\(\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) (2)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.8\\y=2.12\\z=2.15\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vì \(\left(3x-5\right)^{2006}\ge0\) ; \(\left(y^2-1\right)^{2008}\ge0\) ; \(\left(x-z\right)^{2100}\ge0\)
\(\Rightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y^2=1\\z=\frac{5}{3}\end{cases}}\)<=> x = z = 5/3 và y = 1 hoặc y = -1
Vậy....
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Ta có:
\(\hept{\begin{cases}\left(3x-5\right)^{2006}\ge0\\\left(y^2-1\right)^{2008}\ge0\\\left(x-z\right)^{2100}\ge0\end{cases}}\)
\(\Leftrightarrow\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Dấu "=" xảy ra:
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)
Vây khi x = \(\frac{5}{3}\); y = \(\pm1\), z = \(\frac{5}{3}\)thì biểu thức trên có giá trị bằng 0.
Chúc em học tốt nhé!!!
#)Giải :
Câu 1 :
a)
- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0
- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b2.b = b3
=> b3 ≥ 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên dương, b là số nguyên âm và c = 0
1)
A=(x-2)^2-1
ta co (x-2)^2>=0 moi x thuoc R
(x-2)^2-1>=-1 moi.....
hay A>=-1
vay gia tri nho nhat cua bieu thuc A=1<=> x-2=0 => x=2
2)
C= 3:(x-2)^2+5
ta co (x-2)^2>=0 moi ...
3:(x-2)^2= <0 moi...
3:(x-2)^2+5=<5moi...
hay C=<5 moi...
vay gia tri lon nhat cu bieu thuc C=5<=>x-2=0=>x=2
xin loi ban minh chi lam dc the thoi
Ta có: A = \(\left|2x-2\right|+\left|2x-2013\right|\)
=> A = \(\left|2x-2\right|+\left|2013-2x\right|\)\(\ge\)\(\left|2x-2+2013-2x\right|=\left|2011\right|=2011\)
=> A \(\ge\)2011
Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) \(=\)0
=> \(2\left(x-1\right)\left(2013-2x\right)=0\)
=> \(\left(x-1\right)\left(2013-2x\right)=0\)
=> \(1\le x\le\frac{2013}{2}\)
Vậy Amin = 2011 <=> \(1\le x\le\frac{2013}{2}\)
A = |2x - 2| + |2x - 2013| = |2x - 2| + |2013 - 2x| ≥ |2x - 2 + 2013 - 2x| = |2011| = 2011
Dấu "=" xảy ra <=> (2x - 2)(2013 - 2x) ≥ 0
<=> (2x - 2)(2x - 2013) ≤ 0
<=> 1 ≤ x ≤ 2013/2
Mà x là số nguyên ....
Vậy Amin = 2011 tại 1 ≤ x ≤ 2013/2
b) Ta có: \(|x-3,5|\ge0;\forall x\)
\(\Rightarrow|x-3,5|+2,3\ge2,3;\forall x\)
\(\Rightarrow\frac{4,6}{|x-3,5|+2,3}\le\frac{4,6}{2,3};\forall x\)
Hay \(I\le2;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x-3,5|=0\)
\(\Leftrightarrow x=3,5\)
Vậy MAX I =2 \(\Leftrightarrow x=3,5\)
a) Ta có: \(\hept{\begin{cases}|x+2,1|\ge0;\forall x\\|y-4,6-2015|\ge0;\forall y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-|x+2,1|\le0;\forall x\\-|y-2019,6|\le0;\forall x\end{cases}}\)
\(\Rightarrow-|x+2,1|-|y-2019,6|\le0;\forall x,y\)
Hay \(G\le0;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}|x+2,1|=0\\|y-2019,6|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2,1\\y=2019,6\end{cases}}\)
Vậy MAX G=0 \(\Leftrightarrow\hept{\begin{cases}x=-2,1\\y=2019,6\end{cases}}\)