Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H M N C I
a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:
\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\) cạnh chung \(BH\)
\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )
b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )
\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)
Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:
\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)
\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )
c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:
\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)
\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)
\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)
\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)
Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)
Vì I là trung điểm của BC => BI = CI
Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:
\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)
\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)
\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )
d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:
\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)
\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)
Xét tam giác vuông AHC, theo định lý Py-ta-go ta có:
\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)
\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)
Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)
a) Xét tam giác AME vuông tại E và tam giác AMF vuông tại F có:
\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của \(\widehat{BAC}\))
AM:chung
Suy ra \(\Delta AME=\Delta AMF\)(cạnh huyền- góc nhọn)(1)
=> ME=MF(2 cạnh tương ứng)
Suy ra MEF cân.
b)Theo đề bài: tam giác ABC có M là trung điểm BC và AM là phân giác góc BAC. Suy ra AM vừa là đường trung tuyến vừa là đường phân giác của tam giác ABC và tam giác ABC là tam giác cân.(2)
c)Từ (2)suy ra AM là đường cao của tam giác cân ABC và \(AM\perp BC\)(3)
Từ (1) ta cũng suy ra AE=AF (2 cạnh tương ứng) và AEF là tam giác cân. Xét:
\(\widehat{AEF}=\widehat{AFE=}\frac{180^o-\widehat{A}}{2}\left(4\right)\)
\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\left(5\right)\)(ABC là tam giác cân(cmt))
Từ (4) và (5), suy ra các cạnh trên bằng nhau. Mà chúng lại ở vị trí so le trong nên EF//BC(6)
Từ (3) và (6), suy ra \(AM\perp EF\)(đpcm)
xin sửa lại đề bài toán câu a cho a bn A) tam giác ABM=tam giác ACM
A)vì AB=AC nên tam giác ABC cân tại A
vì tam giác ABC cân tại A nên ABC = ACB
Xét tam giác ABM và tam giác ACM
MAB=MAC
AB=AC
ABM=ACM
Suy ra tam giác ABM = tam giác ACM (G.C.G)
B) vì tam giác ABM=tam giác ACM (câu a) nên BM=MC (2 cạnh t.ư)
suy ra M là tđ của BC
Vì tam giác ABM= tam giác ACM (câu a) nên AMB=AMC
ta có : AMB + AMC =180ĐỘ ( 2 góc kề bù)
nên AMB = AMC = 180độ :2 =90độ
suy ra AM vuông góc BC
a, +Xét tam giác ABM và ACM có:
AB=AC(Giả thiết) --
AM là cạnh chung) I =>tam giác ABM=ACM (C-C-C)
MB=MC(Giả thiết) --
b, +Ta có: tam giác ABM=ACM
=> góc AMB=góc AMC (2 góc tương ứng)
+Ta có:
góc AMB+AMC=180 ( 2 góc kề bù)
AMB+AMB=180
AMB = 90(độ)
=>AM vuông góc với BC
c, +Ta có: tam giác ABM=ACM
=> góc BAM=góc CAM(2 góc tương ứng)
=>AM là tia phân giác của góc BAC
hay AM là tia phân giác của góc A
Vậy a,tam giác ABM=ACM
b,AM vuông góc với BC
c,AM là tia phân giác của góc A
Mình vừa post câu hỏi Bạn @Mai Anh đã có câu trl rồi , bạn giỏi quá !~~~
Mà bài chỉ có 1 ý thôi bạn ơi