Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em trả lời tiếp
d) vì tia Om là tia đối của tia Ox
=> xOm = 180o
=> mOt = xOm - xOt = 180o- 130o = 50o
câu 4
a)vì các tia Oy và Ot đều nằm trên nửa mặt phẳng bờ Ox mak xOy =65o xOt=130o
=> xOy < xOt
=> tia Oy nằm giữa
b) ta có xOy + yOt = xOt
=> yOt =xOt -xOy =130o- 65o =65o
c) vì tia Oy nằm giữa
mak yOt = xOt =65o
=> tia Oy là tia phân giác của xOt ( thưa thầy tia Om ko có thì làm sao tính)
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\\ \Leftrightarrow\left(\dfrac{x}{10}-\dfrac{3}{2}+\dfrac{1}{5}\right)\left(\dfrac{x}{10}-\dfrac{3}{2}-\dfrac{1}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{10}-\dfrac{13}{10}=0\\\dfrac{x}{10}-\dfrac{17}{10}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=17\end{matrix}\right.\)
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\)
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2=\dfrac{1}{25}\)
\(\dfrac{x}{10}-\dfrac{3}{2}=\pm\dfrac{1}{5}\)
\(\left[{}\begin{matrix}\dfrac{x}{10}-\dfrac{3}{2}=\dfrac{1}{5}\\\dfrac{x}{10}-\dfrac{3}{2}=-\dfrac{1}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x-15=2\\x-15=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2+15\\x=-2+15\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=17\\x=13\end{matrix}\right.\)
Vậy \(x_1=17;x_2=13\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
Ta có:gọi số sản phẩm của đội thứ nhất là a,của đội thứ 2 là b và của đội thứ 3 là c.
Ta có:a=\(\dfrac{1}{2}\)b\(\Rightarrow\)b=2a
b=\(\dfrac{1}{2}\)c mà a=\(\dfrac{1}{2}\)b\(\Rightarrow\)a=\(\dfrac{1}{4}\)c\(\Rightarrow\)c=4a
b=2a và c=4a nên a+b+c=a+2a+4a
Mà a+b+3=84
7a=84
a=84:7=12
b=12.2=24
c=12.4=48
Vậy số sản phẩm của đội 1 là 12,đội 2 là 24 và đội 3 là 48
Có 1 dòng là a+b+3 mình viết nhầm,đáng nhẽ phải là a+b+c nhé,sorry nha
\(\dfrac{6^{100}\cdot18^{100}\cdot49^{50}}{14^{100}\cdot27^{100}\cdot4^{50}}\)
\(=\dfrac{3^{100}\cdot2^{100}\cdot\left(3^2\right)^{100}\cdot2^{100}\cdot\left(7^2\right)^{60}}{7^{100}\cdot2^{100}\cdot\left(3^3\right)^{100}\cdot\left(2^2\right)^{50}}\)
\(=\dfrac{3^{100}\cdot3^{200}\cdot2^{100}\cdot7^{120}}{7^{100}\cdot3^{300}\cdot2^{100}}\)
\(=\dfrac{3^{200}\cdot7^{20}}{3^{200}}\)
\(=7^{20}\)
a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)
\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)
b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)
\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)
\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)
c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)
\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)
\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)
d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)
e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)
\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)
a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)
\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{303}{610}\)
\(\Rightarrow B=\frac{101}{610}\)
b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)
\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)
\(\Rightarrow C=\frac{408}{205}\)
c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)
\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)
\(\Rightarrow D=\frac{1350}{271}\)
a)\(4^{72}=\left(4^3\right)^{24}=64^{24}\)
\(8^{48}=\left(8^2\right)^{24}=64^{24}\)
\(\Rightarrow4^{72}=8^{48}\)
a) \(4^{72}=\left(2^2\right)^{72}=2^{144}\)
\(8^{48}=\left(2^3\right)^{48}=2^{144}\)
mà \(2^{144}=2^{144}\)=> \(4^{72}=8^{48}\)
b) \(2^{252}=\left(2^2\right)^{126}=4^{126}\)
mà \(4^{126}< 5^{127}\)=> \(5^{127}>2^{252}\)
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )