Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ 1 đến 50 gồm có 50 - 1 + 1 = 50 (số)
50 số có 25 cặp
Mà mỗi cặp có tổng là 51 ( tính từng cặp số ở hai đầu)
Vậy : S = 51 * 25
= 1275
b) Từ 2 đến 100 gồm có ( 100 - 2 ) : 2 + 1 = 50
50 số có 25 cặp
Mà mỗi cặp có tổng là 102 ( tính từng cặp số ở hai đầu)
Vậy : S = 102 * 25
= 2500
c) Từ 1 đến 99 gồm có (99-1) : 2 + 1 = 50 (số)
50 số có 25 cặp
Mà mỗi cặp có tổng là 100 ( tính từng cặp số ở hai đầu)
Vậy : S = 100 * 25
= 2500
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
1+(-2)+3+(-4)+.......+19+(-20)
=(1+(-2))+(3+(-4))+....+(19+(-20)) có 10 nhóm như vậy
=(-1)+(-1)+.....+(-1)
=-10
a) 1 + (-2) + 3 + (-4) + ... + 19 + (-20)
= 1 - 2 + 3 - 4 + ... + 19 - 20
= ( 1 + 3 + ... + 19 ) - ( 2 + 4 + ... + 20 )
Số số hạng VT : ( 19 - 1 ) : 2 + 1 = 10 ( số )
Tổng VT = ( 19 + 1 ) . 10 : 2 = 100
Số số hạng VP : ( 20 - 2 ) : 2 + 1 = 10 ( số )
Tổng VP là : ( 20 + 2 ) x 10 : 2 = 110
Ta có biểu thức :
100 - 110
= -10
chờ tý
\(\dfrac{6^{100}\cdot18^{100}\cdot49^{50}}{14^{100}\cdot27^{100}\cdot4^{50}}\)
\(=\dfrac{3^{100}\cdot2^{100}\cdot\left(3^2\right)^{100}\cdot2^{100}\cdot\left(7^2\right)^{60}}{7^{100}\cdot2^{100}\cdot\left(3^3\right)^{100}\cdot\left(2^2\right)^{50}}\)
\(=\dfrac{3^{100}\cdot3^{200}\cdot2^{100}\cdot7^{120}}{7^{100}\cdot3^{300}\cdot2^{100}}\)
\(=\dfrac{3^{200}\cdot7^{20}}{3^{200}}\)
\(=7^{20}\)