K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

( x - 2 )( x - 4 ) + 3

<=> x2 - 6x + 8 + 3

<=> ( x2 - 6x + 9 ) + 2

<=> ( x - 3 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!

28 tháng 10 2019

\(P=x^2-4x+2x-8+9,5=x^2-2x+1-9+9,5=\)

\(=\left(x-1\right)^2+0,5>0\forall x\)

19 tháng 9 2019

(x + 2)(x - 1) - x(x + 3)

= x^2 - x + 2x - 2 - x^2 - 3x

= -2x - 2

19 tháng 9 2019

giúp mình giải câu này vs

\(\frac{6x}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\) 

15 tháng 12 2019

\(4x^2-4x+3\)

\(=\left(4x^2-4x+1\right)+2\)

\(=\left(2x+1\right)^2+2>0\)với mọi x

vậy \(4x^2-4x+3>0\)với mọi x

15 tháng 12 2019

\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)

Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)

hay \(4x^2-4x+3>0\forall x\)

3 tháng 12 2017

Ta có: \(x^2-4x+5=\left(x^2-2.x.2+2^2\right)+1\)

                                      \(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right);1\ge0\)

Vậy \(x^2-4x+5\ge0\left(\forall x\right)\)

21 tháng 1 2019

bạn ghi lại đầu bài đi mk nhìn khó hiểu wá

21 tháng 1 2019

x4- x3y - x2y+ axy3+ by4    chia hết cho  x3- 2xy + 3y2

ĐƯỢC CHƯA VẬY?

2 tháng 7 2017

Có : \(\left|x+1\right|+\left|x+2\right|+.....+\left|x+9\right|\ge0\)

<=> \(10x\ge0\)

<=> \(x\ge0\)

Vậy , ta có thể phá trị tuyệt đối vì trị của nó không âm

=> \(x+1+x+2+x+3+.....+x+9=10x\)

=> \(9x+45=10x\)

<=> x = 45

2 tháng 7 2017

Dễ thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow10x\ge0\Rightarrow x\ge0\)

\(pt\Leftrightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+9\right)=10x\)

\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+9\right)=10x\)

\(\Leftrightarrow9x+45=10x\)

\(\Leftrightarrow9x-10x=-45\Leftrightarrow x=45\) (thỏa)

15 tháng 7 2020

Xem lại đề bài đi. Đó có phải là bài toán không?

15 tháng 7 2020

thieu de ban oi