Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tính nhanh
d, 66 . 25 + 5 . 66 + 66 . 14 + 33 . 66
Bài 2: Tìm x
7 + ( 63 : X - 11 ) . 23 = 237
Bài 1
\(d,66\cdot25+5\cdot66+66\cdot14+33\cdot66\)
\(=66\left(25+5+14+33\right)\)
\(=66\cdot77\)
\(=5082\)
Hình như chép sai đề vì không thể nào tính nhanh đc
Bài 2
\(7+\left(63:x-11\right)\cdot23=237\)
\(\Leftrightarrow\left(63:x-11\right)\cdot23=230\)
\(\Leftrightarrow63:X-11=10\)
\(\Leftrightarrow63:x=21\)
\(\Leftrightarrow x=3\)
Bài 1 :
\(d,66.25+5.66+66.14+33.66\)
\(=66.\left(25+5+14+33\right)\)
\(=66.77\)
\(=5082\)
Bài 2 :
\(7+\left(63:x-11\right).23=237\)
\(\Leftrightarrow\left(63:x-11\right).23=230\)
\(\Leftrightarrow63:x-11=10\)
\(\Leftrightarrow63:x=21\)
\(\Leftrightarrow x=3\)
Vậy x = 3 .
Học tốt nhé
Cho mình xin cách giải chứ đáp số mình biết lâu rùi :)))))(((((
Bài 1:
a) 2/19 + 2/10 + 2/22 + 17/19 + 2/11 + 4/5 + 8/11
=(2/19 +17/19) + 1/5 + 1/11 + 2/11 + 4/5 + 8/11
= 1 + (1/5 + 4/5) + (2/11 + 8/11 + 1/11)
= 1 + 1 + 1 = 3
b) 3/9 + 4/12 + 6/18 + 1/3 + 5/15 + 7/21
= 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3
= 1/3 x 6 = 2
c) 100 + (125x3-125x2-125) x (1 + 3 + 5 + 7 + ...+ 97 + 99)
= 100 + [125x(3-2-1)] x A
= 100 + (125x0) x A
= 100 + 0 x A
= 100 + 0
= 100
Bài 2:
Gọi số đó là ab
(a+b) x 6 = ab
a x 6 + b x 6= a x 10 + b
b x 5 = a x 4
suy ra a=5; b=4; ab=54
Bài 3:
Vì các số lẻ x 5 đều có tận cùng là 5 nên các tích đều có tận cùng là 5.
Mà 5x3=15 nên P có tận cùng là 5
Bài 1:
a) 2/19 + 2/10 + 2/22 + 17/19 + 2/11 + 4/5 + 8/11
=(2/19 +17/19) + 1/5 + 1/11 + 2/11 + 4/5 + 8/11
= 1 + (1/5 + 4/5) + (2/11 + 8/11 + 1/11)
= 1 + 1 + 1 = 3
b) 3/9 + 4/12 + 6/18 + 1/3 + 5/15 + 7/21
= 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3
= 1/3 x 6 = 2
c) 100 + (125x3-125x2-125) x (1 + 3 + 5 + 7 + ...+ 97 + 99)
= 100 + [125x(3-2-1)] x A
= 100 + (125x0) x A
= 100 + 0 x A
= 100 + 0
= 100
Bài 2:
Gọi số đó là ab
(a+b) x 6 = ab
a x 6 + b x 6= a x 10 + b
b x 5 = a x 4
suy ra a=5; b=4; ab=54
Bài 3:
Vì các số lẻ x 5 đều có tận cùng là 5 nên các tích đều có tận cùng là 5.
Mà 5x3=15 nên P có tận cùng là 5
Bài làm
80 : 80 = 1
10 : 10 = 1
20 : 20 = 1
30 : 10 = 3
40 : 20 = 2
50 : 50 = 1
60 : 3 = 20
70 : 7 = 10
100 : 25 = 4
90 : 3 = 30
# Học tốt #
80:80=1
10:10=1
20:20=1
30:10=3
40:20=2
50:50=1
60:3=20
70:7:=10
100:25=4
90:3=30
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
Đặt \(A=\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+\frac{4}{9\cdot11}\)
\(\frac{1}{2}A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{1}{2}A=1-\frac{1}{11}\)
\(\frac{1}{2}A=\frac{10}{11}\)
\(A=\frac{10}{11}:\frac{1}{2}=\frac{10}{11}\cdot2=\frac{20}{11}\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2\times\left(1-\frac{1}{11}\right)=2\times\frac{10}{11}\)
\(=\frac{20}{11}\)
\(\frac{4}{3.7}+\frac{5}{7.12}+\frac{1}{12.13}+\frac{7}{13.20}+\frac{3}{20.23}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\)
\(=\frac{1}{3}-\frac{1}{23}=\frac{23}{69}-\frac{3}{69}=\frac{20}{69}\)