Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mình xin cách giải chứ đáp số mình biết lâu rùi :)))))(((((
a. Ta tính trước số bị chia: 1 + 4 + 7 + …… + 100
Dãy số gồm có: (100 – 1) : 3 + 1 = 34 (số hạng)
Ta thấy: 1 + 100 = 4 + 97 = 101 = …..
Do đó số bị chia là: 101 x 34 : 2 = 1717
Ta có: 1717 : a = 17
a = 1717 : 17
a = 101
vậy a = 101.
b.
x - 1 2 × 5 3 = 7 4 - 1 2 x - 1 2 × 5 3 = 5 4 x - 1 2 = 5 4 : 5 3 x - 1 2 = 3 4 x = 3 4 + 1 2 x = 5 4
c. 2000 2001 v à 2001 2002
Ta có: 1 - 2000 2001 = 1 2001
1 - 2001 2002 = 1 2002
Vì 1 2001 > 1 2002 nên 2000 2001 < 2001 2002
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
Trả lời:
a, \(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-\left(\frac{2}{5}+\frac{2}{17}+\frac{6}{10}+\frac{9}{51}\right)\)
\(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-\left(\frac{2}{5}+\frac{2}{17}+\frac{3}{5}+\frac{3}{17}\right)\)
\(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-\left(\frac{5}{5}+\frac{5}{17}\right)\)
\(A=5\times\left(\frac{1}{5}+\frac{1}{7}\right)-5\times\left(\frac{1}{5}+\frac{1}{17}\right)\)
\(A=5\times\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{5}-\frac{1}{7}\right)\)
\(A=5\times\left(\frac{1}{7}-\frac{1}{17}\right)\)
\(A=5\times\frac{10}{119}\)
\(A=\frac{50}{119}\)
b, \(B=\frac{2003\times14+1988+2001\times2002}{2002+2002\times503+504\times2002}\)
\(B=\frac{\left(2002+1\right)\times14+1988+2001\times2002}{2002\times\left(1+503+504\right)}\)
\(B=\frac{2002\times14+14+1988+2001\times2002}{2002\times1008}\)
\(B=\frac{2002\times14+2002+2001\times2002}{2002\times1008}\)
\(B=\frac{2002\times\left(14+1+2001\right)}{2002\times1008}\)
\(B=\frac{2002\times2016}{2002\times1008}\)
\(B=2\)
c, Sửa dề
\(\left(4,58\div3,27+5,23\div3,27\right)\times4,08-4,08\)
\(=\left[\left(4,58+5,23\right)\div3,27\right]\times4,08-4,08\)
\(=\left(9,81\div3,27\right)\times4,08-4,08\)
\(=3\times4,08-4,08\)
\(=4,08\times\left(3-1\right)\)
\(=4,08\times2\)
\(=8,16\)
d, \(\frac{6}{11}+\frac{7}{17}+\frac{8}{25}+\frac{10}{17}+\frac{16}{11}+\frac{17}{25}\)
\(=\left(\frac{6}{11}+\frac{16}{11}\right)+\left(\frac{7}{17}+\frac{10}{17}\right)+\left(\frac{8}{25}+\frac{17}{25}\right)\)
\(=2+1+1\)
\(=4\)
a) 4/5 và 7/9 ; MSC: 45 ; 4/5= 36/45 ; 7/9 = 35/45
b) 5/6 và 7/18 ;msc :18; 5/6=15/18 ; 7/18 giữ nguyên
c) 3/8 và 7/12;msc : 24; 3/8=9/24; 7/12= 14/24
CHÚC BẠN HỌC TỐT ^-^
T I C H CHO MIK NHA
\(\frac{3}{5}:\frac{7}{9}\times\frac{7:9}{3:5}+1999\)
\(=\frac{3}{5}\times\frac{9}{7}\times\frac{\frac{7}{9}}{\frac{3}{5}}+1999\)
\(=\frac{3}{5}\times\frac{9}{7}\times\frac{7}{9}:\frac{3}{5}+1999\)
\(=\frac{3}{5}\times\frac{9}{7}\times\frac{7}{9}\times\frac{5}{3}+1999\)
\(=\frac{3\times9\times7\times5}{5\times7\times9\times3}+1999\)
\(=1+1999\)
\(=2000\)
Chúc bn học tốt !!!
Đặt \(A=\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+\frac{4}{9\cdot11}\)
\(\frac{1}{2}A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{1}{2}A=1-\frac{1}{11}\)
\(\frac{1}{2}A=\frac{10}{11}\)
\(A=\frac{10}{11}:\frac{1}{2}=\frac{10}{11}\cdot2=\frac{20}{11}\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2\times\left(1-\frac{1}{11}\right)=2\times\frac{10}{11}\)
\(=\frac{20}{11}\)