Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M(x;y) là điểm biều diễn số phức z.
Từ giả thiết, ta có |z - 4 - 3i| = 5
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C)
Vậy Dấu “=”xảy ra
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà
suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
=> a + b = 10
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =
5
. Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có:
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
Giả sử: \(z=x+yi (x;y\in |R)\)
Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)
<=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)
<=>\(2x+2yi+2=3x-3yi+5i-i^2\)
<=>\((3x-2x+1-2)+(5-3y-2y)i=0\)
<=>\((x-1)+(5-5y)i=0\)
<=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)
<=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)
Suy ra: z=1+i =>|z|=\(\sqrt{2}\)
Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :
\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)
\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)
Giải:
Đặt \(z=a+bi\) với $a,b$ là các số thực
Ta có:
\(|z-i|=|(1+i)z|\Leftrightarrow |a+i(b-1)|=|z||1+i|=|a+bi|\sqrt{2}\)
\(\Leftrightarrow a^2+(b-1)^2=2(a^2+b^2)\)
\(\Leftrightarrow a^2+(b+1)^2=2\)
Vậy tập hợp biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,-1)\) bán kính \(R=\sqrt{2}\)
\(\left(1-2i\right)z+\frac{1-3i}{1+i}=2-i\Leftrightarrow z=\frac{1}{5}+\frac{7}{5}i\)
\(\Rightarrow\left|z\right|=\sqrt{2}\)
\(f\left(x\right)=\left(\sqrt[3]{x}+\frac{2}{\sqrt{x}}\right)^{15}\) \(=\Sigma_{k=0}^{15}C^k_{15}x^{\frac{15-k}{3}}.x^{\frac{-k}{2}}.2^k\)
\(=\Sigma_{k=0}^{15}C^k_{15}.x^{5-\frac{5k}{2}}.2^k\)
\(\left(0\le k\le15,\right)k\in Z\)
Hệ số không chứa x ứng với k thỏa mãn : \(5-\frac{5k}{6}=0\Leftrightarrow k=6\) => Hệ số 320320
Đáp án A.
Phương pháp:
Từ tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z=x+yi
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có:
nhỏ nhất
Cách giải: Gọi z=x+ui ta có:
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có:
nhỏ nhất.
Ta có:
Dấu bằng xảy ra
M thuộc trung trực của AB.
Gọi I là trung điểm của AB ta có
Phương trình đường trung trực của AB là
Để
Tọa độ điểm M là nghiệm của hệ phương trình