K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Đáp án A.

Gọi M(x;y) là điểm biểu diễn số phức z.

Từ giả thiết, ta có 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5

Khi đó P = MA + MB, với A(-1;3), B(1;-1)

Ta có 

Gọi E(0;1) là trung điểm của AB

 

Do đó   mà 

suy ra

Với C là giao điểm của đường thẳng EI với đường tròn (C).

Vậy  Dấu “=” xảy ra 

=> a + b = 10

11 tháng 11 2017

Đáp án A

Gọi M(x;y) là điểm biều diễn số phức z.

Từ giả thiết, ta có |z - 4 - 3i| = 5  

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =   5

Khi đó P = MA + MB với A(-1;3), B(1;-1)

Ta có

Gọi E(0;1) là trung điểm của AB 

Do đó  mà  suy ra 

 

Với C là giao điểm của đường thẳng EI với đường tròn (C)

Vậy Dấu “=”xảy ra  

31 tháng 3 2017

Đáp án A.

Gọi M(x;y) là điểm biểu diễn số phức z.

Từ giả thiết, ta có 

=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =  5 . Khi đó P = MA + MB, với A(-1;3), B(1;-1)

Ta có: 

Gọi E(0;1) là trung điểm của AB 

Do đó  mà suy ra 

Với C là giao điểm của đường thẳng EI với đường tròn (C).

Vậy Dấu “=” xảy ra

18 tháng 7 2018

đặc \(z=a+bi\) với \(a;b\in R;i^2=-1\)

ta có : \(\left|z-4-3i\right|=\sqrt{5}\Leftrightarrow\left(a-4\right)^2+\left(b-3\right)^2=5\)

\(\Leftrightarrow a^2+b^2=8x+6x-20\)

đặc \(A=\left|z+1-3i\right|+\left|z-1+i\right|=\sqrt{\left(a+1\right)^2+\left(b-3\right)^2}+\sqrt{\left(a-1\right)^2+\left(b+1\right)^2}\)

áp dụng bunhiacopxki ta có :

\(A\le\sqrt{2\left[\left(a+1\right)^2+\left(b-3\right)^2+\left(a-1\right)^2+\left(b+1\right)^2\right]}\)

\(\Leftrightarrow A\le\sqrt{2\left(2a^2+2b^2-4b+12\right)}=\sqrt{2\left(16a+12b-40-4b+12\right)}\)

\(\Leftrightarrow A\le\sqrt{2\left[16\left(a-4\right)+8\left(b-3\right)\right]+120}\)

áp dụng bunhiacopxki lần nữa ta có :

\(A\le\sqrt{2\left(16^2+8^2\right)\left[\left(a-4\right)^2+\left(b-3\right)^2\right]+120}\)

\(\Leftrightarrow A\le2\sqrt{830}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-3\right)^2=\left(a-1\right)^2+\left(b+1\right)^2\\\dfrac{a-4}{16}=\dfrac{b-3}{8}\\\left(a-4\right)^2+\left(b-3\right)^2=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\\\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\end{matrix}\right.\)

khi \(\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\Rightarrow P=a+b=10\)

khi \(\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\Rightarrow P=a+b=4\)

vậy \(P=10;P=4\)

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i | 2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z 3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z 4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là...
Đọc tiếp

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i |

2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z

3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z

4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là số thực

5. Cho 3 điểm A, B, M lần lượt biểu diễn các số phức -4, 4i, x + 3i. Với giá trị thực nào của x thì A, B, M thẳng hàng?

6. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Xác định phần ảo của số phức \(3z_1-2z_2\)

7. Nếu mô đun số phức z bằng m thì mô đun của số phức \(\left(1-i\right)^2z\) bằng?

8. Trong tất cả các số phức z thỏa mãn hệ thức | z-1+3i | = 3. Tìm min | z-1-i |

9. Trong mặt phẳng phức tìm điểm biểu diễn số phức z = \(\frac{i^{2017}}{3+4i}\)

10. Trong mặt phẳng phức với hệ trục tọa độ Oxy, điểm biểu diễn của các số phức z = 3 + bi với b \(\in\) R luôn nằm trên đường có phương trình là: A. y = x B. x = 3 C. y = x + 3 D. y = 3

11. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Tổng hai số phức là?

12. Cho số phức z = 2 + 5i. Tìm số phức \(w=iz+\overline{z}\)

13. Ký hiệu \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2+z+1=0\). Tìm trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(w=\frac{i}{z_0}\): A. \(M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) B. \(M\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right)\) C. \(M\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) D. \(M\left(-\frac{1}{2};-\frac{\sqrt{3}}{2}\right)\)

14. Cho số phức z thỏa mãn hệ thức | z+7-5i | = | z-1-11i |. Biết rằng số phức z = x + yi thỏa mãn \(\left|z-2-8i\right|^2+\left|z-6-6i\right|^2\) đạt giá trị nhỏ nhất. Giá trị của biểu thức \(p=x^2-y^2\)?

15. Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(2z^2-6z+5=0\). Điểm nào sau đây biểu diễn số phức \(iz_0\): A. \(M\left(\frac{3}{2};\frac{1}{2}\right)\) B. \(M\left(\frac{3}{2};-\frac{1}{2}\right)\) C. \(M\left(-\frac{1}{2};\frac{3}{2}\right)\) D. \(M\left(\frac{1}{2};\frac{3}{2}\right)\)

16. Tính mô đun của số phức \(w=z^2+i\overline{z}\) biết z thỏa mãn \(\left(1+2i\right)z+\left(2+3i\right)\overline{z}=6+2i\)

17. Trong mặt phẳng phức, cho 3 điểm A, B, C lần lượt biểu diễn 3 số phức \(z_1=1+i\), \(z_2=\left(1+i\right)^2\), \(z_3=a-i\left(a\in R\right)\). Để tam giác ABC vuông tại B thì A bằng? A. -3 B. 3 C. -4 D. -2

18. Cho số phức z thỏa mãn (1+2i)z = 3+i. Tính giá trị biểu thức \(\left|z\right|^4-\left|z\right|^2+1\)

19. Cho số phức z = a + (a-1)i (a\(\in R\)). Giá trị thực nào của a để | z | = 1 ?

20. Cho số phức z thoả mãn hệ thức | z+5-i | = | z+1-7i |. Tìm giá trị lớn nhất của biểu thức P = | |z-4-i| - |z-2-4i| |

21. Trong các số phức z = a + bi thỏa mãn | z-1+2i | =1, biết rằng | z+3-i | đạt giá trị nhỏ nhất. Tính \(p=\frac{a}{b}\)

22. Gọi A, B, C lần lượt là các điểm biểu diễn các số phức \(z_1=-1+3i\), \(z_2=-3-2i\), \(z_3=4+i\). Chọn kết luận đúng nhất: A. Tam giác ABC cân B. Tam giác ABC đều C. Tam giác ABC vuông D. Tam giác ABC vuông cân

23. Cho số phức z = 5-3i. Tính \(1+\overline{z}+\left(\overline{z}\right)^2\)

24. Cho \(f\left(z\right)=z^3-3z^2+z-1\) với z là số phức. Tính \(f\left(z_0\right)-f\left(\overline{z_0}\right)\) biết \(z_0=1-2i\)

25. Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M (3;-4) là: A. \(\sqrt{13}\) B. \(2\sqrt{2}\) C. \(2\sqrt{5}\) D. \(2\sqrt{10}\)

6
NV
26 tháng 4 2019

Câu 1:

Gọi \(A\left(1;-1\right)\)\(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)

Gọi \(M\left(-2;-1\right)\)\(N\left(3;-2\right)\)\(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN

Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d

Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng

Phương trình đường thẳng d' qua M và vuông góc d có dạng:

\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)

\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)

Bài 2:

Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)

\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I

\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)

Câu 3:

\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)

\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)

NV
26 tháng 4 2019

Câu 4

\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)

\(=5m+3-\left(m^2+m-6\right)i\)

Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)

Câu 5:

\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)

Câu 6:

\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)

\(\Rightarrow b=12\)

Câu 7:

\(w=\left(1-i\right)^2z\)

Lấy môđun 2 vế:

\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)

Câu 8:

\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)

\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)

NV
2 tháng 4 2019

\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)

\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)

\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)

\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)

\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)

\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)

\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)

\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)

\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)

\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)

\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max

Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)

\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)

\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)

\(\Rightarrow P=2a+4b^2=-1+3=2\)

5 tháng 11 2019

Đáp án A.

Phương pháp:

Từ  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z=x+yi 

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có: 

 nhỏ nhất

 

Cách giải: Gọi z=x+ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có: 

 nhỏ nhất.

Ta có: 

Dấu bằng xảy ra 

 M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  

Phương trình đường trung trực của AB là

 

Để  

Tọa độ điểm M là nghiệm của hệ phương trình 

1 tháng 4 2017

a) (3 + 2i)z – (4 + 7i) = 2 – 5i

⇔(3+2i)z=6+2i

<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i

b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z

⇔(7−3i−5+4i)=−2−3i

⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)

c) z2 – 2z + 13 = 0

⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i

d) z4 – z2 – 6 = 0

⇔ (z2 – 3)(z2 + 2) = 0

⇔ z ∈ { √3, - √3, √2i, - √2i}







1 tháng 9 2019

Đáp án A

Phương pháp:

Cách giải:

 

Khi đó ta có: