Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận thấy:(x-1/5)^2004>0
(y+0,4)^100>0
(z-3)^678>0
=>(x-1/5)^2004+(y+0,4)^100+(z-3)^678>0
mà theo đề:(x-1/5)^2004+(y+0,4)^100+(z-3)^678=0
=>(x-1/5)^2004=(y+0,4)^100=(z-3)^678=0
+)(x-1/5)^2004=0=>x-1/5=0=>x=1/5
+)(y+0,4)^100=0=>y+0,4=0=>y=-0,4
+)(z-3)^678=0=>z-3=0=>z=3
vậy..
tick nhé
vì (x-1/5)2004≥0 với mọi x
(y+0,4)100≥0 với mọi y
(z-3)678≥0 với mọi z
=>(x-1/5)2004+(y+0.4)100+(x-3)678≥0 với mọi x,y,z
nên \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
Vì (x-1/5)2004 ≥ 0 ; (y+0.4)100 ≥ 0 ; (z-3)678 ≥ 0 với mọi x,y,z
Để (x-1/5)2004+(y+0.4)100+(z-3)678=0 <=> (x-1/5)2004 = 0 ; (y+0.4)100 = 0 ; (z-3)678 = 0
=> x-1/5 = 0 ; y+0.4=0 ; z-3=0
=> x=1/5 ; y=-0.4 ; z=3
x^3/8 = y^3/64 = z^3/216
=> (x/2)^3 = (y/4)^3 = (z/6)^3
=> x/2 = y/4 = z/6
=> x^2/4 = y^2/16 = z^2/36 = (x^2 + y^2 + z^2)/(4 + 16 + 36) = 14/56 = 1/4 (t.c dãy tỉ số bằng nhau)
Suy ra :
x^2 = 1 => x = 1 v x = -1
y^2 = 4 => y = 2 v y = -2
z^2 = 9 => z = 3 v z = -3
GIÚP MÌNH VỚI MÌNH SẼ K ĐÚNG CHO CÁC BẠN , NGÀY MAI LÀ MÌNH PHẢI NẠP CHO THẦY
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)
\(\left(y+0.4\right)^{100}\ge0\forall y\)
\(\left(z-3\right)^{678}\ge0\forall z\)
Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)