K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

Với x = 11, ta có: 12 = x + 1

Suy ra: 

x 4 - 12 x 3 + 12 x 2 - 12 x + 111 = x 4 - x + 1 x 3 + x + 1 x 2 - x + 1 x + 11 = x 4 - x 4 - x 3 + x 3 + x 2 - x 2 - x + 111 = - x + 111

Thay x = 11 vào biểu thức ta được: - x + 111 = - 11 + 111 = 100

x=11

nên x+1=12

\(x^4-12x^3+12x^2-12x+111\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+111\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)

=111-x

=111-11=100

3 tháng 11 2016

x=11 suy ra 12=x+1 thay vào A ta có:

A=x^17- (x+1)x^16 + (x+1)x^15 - (x+1)x^14 + .....- (x+1)x^2+(x+1)x -1

= x^17 - x^17 -x^16 + x^16 + x^15 - x^15 - x^14 +.....- x^3 -x^2 + x^2 +x -1

= x-1= 11-1=10

27 tháng 8 2017

Cách 2:

\(A=x^4-12x^3+12x^2-12x+111\)

\(=x^4-11x^3-x^3+11x^2+x^2-11x-x+11+100\)

\(=x^3\left(x-11\right)-x^2\left(x-11\right)+x\left(x-11\right)-\left(x-11\right)+100\)

\(=\left(x^3-x^2+x-1\right)\left(x-11\right)+100\)

Thay x = 11

\(\Rightarrow A=100\)

Vậy...

27 tháng 8 2017

Ta có: 12 = 1+ 11 => 12 = x + 1 (1)

Thay (1) vào đề bài:

\(x^4-\left(x+1\right).x^3+\left(x+1\right).x^2-\left(x+1\right).x+111\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+111\)

\(=-x+111\)

Lại có: x = 11

=> \(-11+111=100.\)

24 tháng 9 2017

a) 1,62 + 4 . 0,8 . 3,4 + 3,42 = 1,62 + 2 . 1,6 . 3,4 + 3,42

= (1,6 + 3,4 )2 = 52 = 25

b) 34 .54 - (152 + 1)(152 - 1) = 34.54 - ( 154 - 1)

= 34.54 - 34.54 + 1

= 1

c) Do x= 11 \(\Rightarrow\) 12 = x + 1

Thay 12 = x+1 vào biểu thức, ta có :

x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 111

= x4 - x4 - x3 + x3 +x2 -x2 - x+ 111

= - x + 111 = -11 + 111 = 100 ( do x = 11)

Vậy ................................

_______________JK ~ Liên Quân Group ______________

27 tháng 5 2017

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)

\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)

Thay x = 14 => B = -14

Vậy...

phần còn lại tách ra làm tương tự nhé

3 tháng 3 2018

cu tao to

23 tháng 1 2017

Ta có: \(\frac{x}{x^2+x+1}=\frac{1}{4}\Leftrightarrow4x=x^2+x+1\Leftrightarrow x^2-3x+1=0\)

\(A=\frac{\left(x^5-3x^4+x^3\right)+\left(3x^4-9x^3+3x^2\right)+\left(5x^3-15x^2+5x\right)+\left(12x^2-36x+12\right)+21x}{\left(x^4-3x^3+x^2\right)+\left(3x^3-9x^2+3x\right)+\left(15x^2-45x+15\right)+42x}\)

\(A=\frac{21x}{42x}=\frac{1}{2}\)

a: \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\le\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)\le5x^2-7\left(2x-3\right)\)

\(\Leftrightarrow2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

hay x<=4

b: \(\dfrac{6x+1}{18}+\dfrac{x+3}{12}>=\dfrac{5x+3}{6}+\dfrac{12-5x}{9}\)

=>2(6x+1)+3(x+3)>=6(5x+3)+4(12-5x)

=>12x+2+3x+9>=30x+18+48-20x

=>15x+11>=10x+66

=>5x>=55

hay x>=11