Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= (1 + 1/3 + 1/5 + .... + 1/49) - (1/2 + 1/4 + 1/6 + .... + 1/50)
= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2.(1/2 + 1/4 + 1/6 + ... + 1/50)
= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)
= 1/26 + 1/27 + 1/28 + ... + 1/50
=> đpcm
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+.......+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+........+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.......+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+........+\frac{1}{50}\left(đpcm\right)\)
Ta có
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{3.4}+...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(1-\frac{1}{50}=\frac{49}{50}\)
Ta có
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\) nên
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)
\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)
\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)
Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)
a, Tự chép đề bài ((:
\(=\frac{1}{9}\cdot1+\left(-\frac{1}{243}\right)\cdot\frac{9}{2}\)
\(=\frac{1}{9}-\frac{1}{54}\)
\(=\frac{5}{54}\)
b, 1. \(\left(\frac{2^2\cdot2^3}{4^2\cdot16}\right)^{15}\)
\(=\left(\frac{2^5}{2^4\cdot2^4}\right)^5=\left(\frac{2^5}{2^8}\right)^5=\left(\frac{1}{2^3}\right)^5=\left(\frac{1}{8}\right)^5=\frac{1}{8^5}\)(Để vậy đi :v)
2. \(\left(\frac{2^6}{16^2}\right)^{10}\)
\(=\left(\frac{2^6}{2^8}\right)^{10}=\left(\frac{1}{2^2}\right)^{10}=\frac{1}{2^{20}}\)
c, \(\frac{2^{15}\cdot9^4}{6^6\cdot8^3}\)
\(=\frac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\frac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\frac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=\frac{3^2}{1}=3^2=9\)
\(A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{49.50.51}.\)
\(2A< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{49.50.51}\)
\(2A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{51-49}{49.50.51}\)
\(2A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(2A< \frac{1}{2}-\frac{1}{50.51}< \frac{1}{2}\Rightarrow A< \frac{1}{4}< \frac{1}{2}\)