K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{49.50.51}.\)

\(2A< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{49.50.51}\)

\(2A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{51-49}{49.50.51}\)

\(2A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(2A< \frac{1}{2}-\frac{1}{50.51}< \frac{1}{2}\Rightarrow A< \frac{1}{4}< \frac{1}{2}\)

23 tháng 9 2018

\(C=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+....+\frac{99.100-1}{100!}\)

\(\Rightarrow C=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\Rightarrow C=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=\left(2+\frac{3.4}{4!}+\frac{4.5}{5!}+....+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{10!}\right)\)

\(\Rightarrow C=\left(2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(\Rightarrow C=2-\frac{1}{99!}-\frac{1}{100!}< 2\Rightarrow C< 2\)

\(b,C=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{19}{9^2.10^2}\)

\(\Rightarrow C=\frac{3}{\left(1.2\right)\left(1.2\right)}+\frac{5}{\left(2.3\right)\left(2.3\right)}+...+\frac{19}{\left(9.10\right)\left(9.10\right)}\)

\(\Rightarrow C=\frac{3}{1.2}.\frac{1}{1.2}+\frac{5}{2.3}.\frac{1}{2.3}+....+\frac{19}{9.10}.\frac{1}{9.10}\)

\(\Rightarrow C=\left(1+\frac{1}{2}\right)\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{3}\right)+....+\left(\frac{1}{9}+\frac{1}{10}\right)\left(\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{90}\)

\(\Rightarrow C=1-\frac{1}{90}< 1\Rightarrow C< 1\)

22 tháng 3 2016

ta thấy 1/(1*2)-1/(2*3)=1/3=2*1/(1*2*3)

do đó A=1/2*{[1/(1*2)-1/(2*3)+[1/(2*3)-1/(3*4)]+.....+[1/(48*49)-1/(49*50)]} 

            =1/2*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+.....+1/(48*49)-1/(49*50)]

            =1/2*[1/(1*2)-1/(49*50)]

            =1/2*(1/2-1/2450)

             =1/2*612/1225

            =306/1225

22 tháng 3 2016

A= 306/1225

4 tháng 7 2017

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.......+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+.......+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< \frac{100}{100}=1\)

\(\Rightarrow A< 1\)

4 tháng 7 2017

mik nghĩ câu trả lời của nghĩa đúng nhưng mà 2 bước cuối phải thay bằng vì 1-^100 < 1 nên A < 1

11 tháng 10 2016

D=\(\frac{1}{1^2}\)-\(\frac{1}{2^2}\)+\(\frac{1}{2^2}\)-\(\frac{1}{3^2}\)+...+\(\frac{1}{9^2}\)-\(\frac{1}{10^2}\)

D=\(\frac{1}{1^2}\)-\(\frac{1}{10^2}\)

D=\(1\)-\(\frac{1}{100}\)

D=\(\frac{99}{100}\)

18 tháng 11 2019

Ta có

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)   và \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}\)  nên

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{n\left(n+1\right)}+...+\frac{1}{2008\cdot2009}=1-\frac{1}{2009}=\frac{2008}{2009}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}+...+\frac{2}{2008\cdot2009\cdot2010}\)

\(=\frac{1}{1\cdot2}-\frac{1}{2009\cdot2010}=\frac{201944}{2009\cdot2010}\)

\(\Rightarrow B=\frac{1}{2}\cdot\frac{201944}{2009\cdot2010}=\frac{1009522}{2009\cdot2010}\)

Do đó \(\frac{B}{A}=\frac{1009522}{2009\cdot2010}:\frac{2008}{2009}=\frac{1009522\cdot2009}{2008\cdot2009\cdot2010}=\frac{5047611}{2018040}\)

26 tháng 2 2018

Ta có  1/1.2-1/2.3=2/1.2.3;1/2.3-1/3.4=2/2.3.4 .....1/98.99-1/99.100=2/98.99.100                                                                                               2A=2/1.2.3+2/2.3.4+....+2/98.99.100 = 1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100 = 1/2-1/99.100 = 4949/9900                                           A =4949/19800                                                                                                     

26 tháng 2 2018

dễ ợt tự làm đê