Tìm tọa độ các đỉnh của tam giác trong trường hợp sau:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

28 tháng 1 2021

Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó

\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C

Giả sử d1 là đường cao kẻ từ B

Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:

\(x-y+m=0\)

Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)

\(\Rightarrow x-y=0\left(AC\right)\)

\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)

\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)

Tương tự ta tìm được \(B=\left(-1;3\right)\)

18 tháng 4 2016

B A K C H(-1;1) 4x+3y-13=0 x-y+1=0

Gọi K là điểm đối xứng với H qua đường phân giác trong góc A. Khi đó K thuộc đường thẳng AC. Đường thẳng HK có phương trình \(x+y+2=0\)

Gọi I là giao điểm của HK và đường phân giác trong góc A thì I có tọa độ là nghiệm của hệ :

\(\begin{cases}x-y+2=0\\x+y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=0\end{cases}\)\(\Rightarrow I\left(-2;0\right)\)

I là trung điểm HK nên suy ta \(K\left(-3;1\right)\)

Khi đó AC :\(3\left(x+3\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y+1=0\)

A có tọa độ thỏa mãn : \(\begin{cases}x-y+2=0\\3x-4y+13=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=7\end{cases}\)\(\Leftrightarrow A\left(5;7\right)\)

AB có phương trình : \(\frac{x+1}{6}=\frac{y+1}{8}\Leftrightarrow4x-3y+1=0\)

B có tọa độ thỏa mãn : \(\begin{cases}4x+3y-1=0\\4x-3y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=\frac{1}{3}\end{cases}\)\(\Rightarrow B\left(0;\frac{1}{3}\right)\)

HC có phương trình : \(3\left(x+1\right)+4\left(y+1\right)=0\Leftrightarrow30+4y+7=0\)

C có tọa độ thỏa mãn hệ phương trình :

 \(\begin{cases}3x+4y+7=0\\3x-4y+13=0\end{cases}\)\(\begin{cases}x=-\frac{10}{3}\\y=\frac{3}{4}\end{cases}\)\(\Rightarrow C\left(-\frac{10}{3};\frac{3}{4}\right)\)

7 tháng 4 2019

cho mk hs: tai sao K thuoc duong thang AC thi HK co phuong trinh nhu vay ak

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)

 

Tọa độ A là:

2x-3y+12=0 và 2x+3y=0

=>x=-3 và y=2

Tọa độ M, M là trung điểm của BC là M(x;-3x/2)

Phương trình BC sẽ là: 3x+2y+c=0

Thay x=4 và y=-1 vào BC, ta được:

3*4+2*(-1)+c=0

=>c+12-2=0

=>c=-10

=>BC: 3x+2y-10=0

=>B(x;5-1,5x); y=5-1,5x

B(x;5-1,5x); C(4;-1); M(x;-3x/2)

Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2

=>2x=x+4 và -3x=5x-1

=>x=4 và -8x=-1(loại)

=>Không có điểm B nào thỏa mãn

31 tháng 3 2020

a) Giao điểm d1 và d2

\(\left\{{}\begin{matrix}x+3y-1=0\\x-3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) => A (-2;1)

Đường thẳng d3 có \(\overrightarrow{n_{d3}}=\left(2;-1\right)\) . Delta vuông góc với d3 nên có

\(\overrightarrow{u_{\Delta}}=\left(2;-1\right)\) \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(-1;-2\right)\)

PTđt delta

\(-1\left(x+2\right)+\left(-2\right)\left(y-1\right)=0\)

\(\Leftrightarrow-x-2y+1=0\)

b) Tương tự, tìm được đường thẳng delta đi qua B(-1;-1)

Hệ số k = tan45 = 1 .

Tự xử nốt