K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tọa độ A là:

2x-3y+12=0 và 2x+3y=0

=>x=-3 và y=2

Tọa độ M, M là trung điểm của BC là M(x;-3x/2)

Phương trình BC sẽ là: 3x+2y+c=0

Thay x=4 và y=-1 vào BC, ta được:

3*4+2*(-1)+c=0

=>c+12-2=0

=>c=-10

=>BC: 3x+2y-10=0

=>B(x;5-1,5x); y=5-1,5x

B(x;5-1,5x); C(4;-1); M(x;-3x/2)

Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2

=>2x=x+4 và -3x=5x-1

=>x=4 và -8x=-1(loại)

=>Không có điểm B nào thỏa mãn

NV
21 tháng 3 2021

Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý

A:

loading...  loading...  loading...  loading...  loading...  loading...  

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN

NV
7 tháng 2 2022

Do A là giao điểm AB, AC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x+y-12=0\\x+4y-6=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(6;0\right)\)

Do B thuộc AB nên tọa độ có dạng: \(B\left(b;-2b+12\right)\)

Do C thuộc AC nên tọa độ có dạng: \(C\left(-4c+6;c\right)\)

Do M là trung điểm cạnh BC nên theo công thức trung điểm:

\(\left\{{}\begin{matrix}b-4c+6=2.0\\-2b+12+c=2.5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b-4c=-6\\-2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}B\left(2;8\right)\\C\left(-2;2\right)\end{matrix}\right.\)

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn