K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó

\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C

Giả sử d1 là đường cao kẻ từ B

Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:

\(x-y+m=0\)

Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)

\(\Rightarrow x-y=0\left(AC\right)\)

\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)

\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)

Tương tự ta tìm được \(B=\left(-1;3\right)\)

Tọa độ A là:

2x-3y+12=0 và 2x+3y=0

=>x=-3 và y=2

Tọa độ M, M là trung điểm của BC là M(x;-3x/2)

Phương trình BC sẽ là: 3x+2y+c=0

Thay x=4 và y=-1 vào BC, ta được:

3*4+2*(-1)+c=0

=>c+12-2=0

=>c=-10

=>BC: 3x+2y-10=0

=>B(x;5-1,5x); y=5-1,5x

B(x;5-1,5x); C(4;-1); M(x;-3x/2)

Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2

=>2x=x+4 và -3x=5x-1

=>x=4 và -8x=-1(loại)

=>Không có điểm B nào thỏa mãn

NV
21 tháng 3 2021

Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý

A. 2x + y + 3 = 0

B. 2x + 3y - 8 = 0

C. 2x + 3y + 8 = 0

D. 3x - 2y + 1 = 0

5 tháng 3 2022

$BC$ có vectơ chỉ phương là: $\overrightarrow{BC}=(2;3)$

Gọi $H$ là chân đường cao hạ từ $A$ xuống $BC$ 

$\Rightarrow AH$ có vectơ pháp tuyến là: $\overrightarrow{BC}=(2;3)$

$AH:2x+3y-8=0$

Chọn đáp án: $B$

7 tháng 8 2016

vì A(2;2) k thuộc d1 và d2.nên gọi d1 là đg cao hạ từ đỉnh B.d2 là đg cao hạ từ C.suy ra n(AC)=(1;-1).n(AB)=(3;9) 

suy ra:AB:3x+9y-24=0     AC:x-y=0.sau đó lấy nghiệm B từ giao của AB và d1.C từ giao của AC và d2.viết bc đi qua b và c:11x+y+8=0

NV
4 tháng 3 2019

Ta có \(AC\perp d\Rightarrow\overrightarrow{n_{AC}}.\overrightarrow{n_d}=0\) đường thẳng AC nhận \(\overrightarrow{n_{AC}}=\left(3;2\right)\) là một vecto pháp tuyến

\(\Rightarrow\) Phương trình đường thẳng AC:

\(3\left(x-4\right)+2\left(y+1\right)=0\Leftrightarrow3x+2y-10=0\)

Mà C là giao điểm của AC và \(d_1\Rightarrow\) tọa độ C là nghiệm của hệ:

\(\left\{{}\begin{matrix}2x+3y=0\\3x+2y-10=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=-4\end{matrix}\right.\) \(\Rightarrow C\left(6;-4\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\in d_1\Rightarrow M\left(a;\dfrac{-2a}{3}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=2a-4\\y_B=2y_M-y_A=\dfrac{3-4a}{3}\end{matrix}\right.\) \(\Rightarrow B\left(2a-4;\dfrac{3-4a}{3}\right)\)

Mặt khác, do \(B\in d\Rightarrow2x_B-3y_B=0\)

\(\Rightarrow2\left(2a-4\right)-3\left(\dfrac{3-4a}{3}\right)=0\)

\(\Leftrightarrow8a-11=0\Rightarrow a=\dfrac{11}{8}\Rightarrow B\left(\dfrac{-5}{4};\dfrac{-5}{6}\right)\)

NV
24 tháng 4 2020

Bài 2:

Gọi đường cao và trung tuyến là BH và BM

Do B là giao điểm BH và BM nên tọa độ B là nghiệm:

\(\left\{{}\begin{matrix}2x-3y+12=0\\2x+3y=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;2\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-7;3\right)\Rightarrow\) đường thẳng AB nhận \(\left(3;7\right)\) là 1 vtpt

Phương trình AB:

\(3\left(x-4\right)+7\left(y+1\right)=0\Leftrightarrow3x+7y-5=0\)

Gọi \(C\left(a;b\right)\Rightarrow\overrightarrow{AC}=\left(a-4;b+1\right)\)

Do \(BH\perp AC\) mà BH nhận \(\left(2;-3\right)\) là 1 vtpt nên: \(\frac{a-4}{2}=\frac{b+1}{-3}\Leftrightarrow3a+2b=10\)

Gọi M là trung điểm AC \(\Rightarrow M\left(\frac{a+4}{2};\frac{b-1}{2}\right)\)

\(M\in BM\Rightarrow2\left(\frac{a+4}{2}\right)+3\left(\frac{b-1}{2}\right)=0\) \(\Leftrightarrow2a+3b=-5\)

\(\Rightarrow\left\{{}\begin{matrix}3a+2b=10\\2a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=8\\b=-7\end{matrix}\right.\) \(\Rightarrow C\left(8;-7\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(4;-6\right)\\\overrightarrow{BC}=\left(11;-9\right)\end{matrix}\right.\)

Bạn tự viết nốt 2 pt đường thẳng AC và BC còn lại, các yếu tố có đủ rồi đấy

NV
24 tháng 4 2020

Bài 1:

Thay tọa độ A vào 2 pt đường thẳng thấy đều ko thỏa mãn

Vậy đó là 2 đường cao xuất phát từ B và C, giả sử chúng là BH: 9x-3y-4=0 và CK: x+y-2=0

Do \(AC\perp BH\) nên đường thẳng AC nhận \(\left(1;3\right)\) là 1 vtpt

Phương trình AC:

\(1\left(x-2\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-8=0\)

Do \(AB\perp CK\) nên AB nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

B là giao điểm CH và AB nên tọa độ B là nghiệm: \(\left\{{}\begin{matrix}9x-3y-4=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow B\left(\frac{2}{3};\frac{2}{3}\right)\)

C là giao điểm AC và CK nên tọa độ C là nghiệm \(\left\{{}\begin{matrix}x+3y-8=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow C\left(-1;3\right)\)

\(\Rightarrow\overrightarrow{BC}=\left(-\frac{5}{3};\frac{7}{3}\right)=\frac{1}{3}\left(-5;7\right)\)

Đường thẳng BC nhận \(\left(7;5\right)\) là 1 vtpt

Phương trình BC:

\(7\left(x+1\right)+5\left(y-3\right)=0\Leftrightarrow7x+5y-8=0\)