Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(A=\frac{-b+c}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-c+a}{-\left(a-b\right)\left(a-c\right)\left(b-a\right)}+\frac{-a+b}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=\frac{-b+c-c+a-a+b}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=\frac{0}{-\left(a-b\right)\left(a-c\right)\left(b-a\right)}\)
A = 0
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Chứng minh tương tự,ta được:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)
cho \(a^3+b^3+c^3=3abc\)
Rút gọn M=\(\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(a^3+b^3+c^3=3abc+\left(a+b+c\right)\left(a^2+b^2+c^2-\left(ab+bc+ac\right)\right)\)
=> a+b+c=0
\(\Rightarrow M=\frac{abc}{\left(-c\right)\left(-a\right)\left(-b\right)}=-1\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Với \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow M=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{abc}{\left(-c\right)\left(-a\right)\left(-b\right)}=-1\)
Với \(a^2+b^2+c^2-ab-bc-ca=0\)
Ta thấy đây là 1 bất đẳng thức quen thuộc
\(a^2+b^2+c^2\ge ab+bc+ca\)
Dấu = xảy ra khi a = b = c
\(\Rightarrow M=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{a^3}{2a.2a.2a}=\frac{1}{8}\)
\(VT=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{\left(b-a\right)-\left(c-a\right)}{\left(b-a\right)\left(c-a\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(c-b\right)\left(a-b\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{1}{c-a}-\frac{1}{b-a}+\frac{1}{a-b}-\frac{1}{c-b}+\frac{1}{b-c}-\frac{1}{a-c}\)
\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=VP\left(đpcm\right)\)
Lời giải:
$\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)}=\frac{-1}{(a-b)(c-a)}+\frac{-1}{(a-b)(b-c)}+\frac{-1}{(c-a)(b-c)}$
$=\frac{-(b-c)}{(a-b)(b-c)(c-a)}+\frac{-(c-a)}{(a-b)(b-c)(c-a)}+\frac{-(a-b)}{(a-b)(b-c)(c-a)}$
$=\frac{-(b-c+c-a+a-b)}{(a-b)(b-c)(c-a)}=0$
0
cách làm nữa bạn à