K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

\(a^3+b^3+c^3=3abc+\left(a+b+c\right)\left(a^2+b^2+c^2-\left(ab+bc+ac\right)\right)\)

=> a+b+c=0

\(\Rightarrow M=\frac{abc}{\left(-c\right)\left(-a\right)\left(-b\right)}=-1\)

7 tháng 1 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Với \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow M=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{abc}{\left(-c\right)\left(-a\right)\left(-b\right)}=-1\)

Với \(a^2+b^2+c^2-ab-bc-ca=0\)

Ta thấy đây là 1 bất đẳng thức quen thuộc

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi a = b = c

\(\Rightarrow M=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{a^3}{2a.2a.2a}=\frac{1}{8}\)

19 tháng 3 2019

Bài 1

a³+b³+c³ = 3abc⇒a³+b³+c³ − 3abc=0

=> a = b = c

 Và a + b + c = 0

Còn bài 2 gửi sau nha

19 tháng 3 2019

Bài 2 khó quá

1 tháng 3 2017

0

1 tháng 3 2017

cách làm nữa bạn à

31 tháng 10 2016

cái áp dụng là Schawrts chứ

12 tháng 8 2020

BĐT sau đây vẫn đúng: \(\Sigma a\left(a-c\right)\left(a-b\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)+\frac{16\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b+c\right)^3}\)

16 tháng 7 2019

Quy đồng đi, ta sẽ được  \(A=0\)

16 tháng 7 2019

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(A=\frac{-b+c}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-c+a}{-\left(a-b\right)\left(a-c\right)\left(b-a\right)}+\frac{-a+b}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{-b+c-c+a-a+b}{-\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(A=\frac{0}{-\left(a-b\right)\left(a-c\right)\left(b-a\right)}\)

A = 0

10 tháng 10 2018

ý a bạn có chắc viết đề bài đúng không

10 tháng 10 2018

đề bài đúng mà