K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

16 tháng 8 2016

a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)

Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)

 

16 tháng 8 2016

\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)

a) Ta có: \(\left(3x-1\right)^2+\left(4x+5\right)^2=\left(5x-7\right)^2\)

\(\Leftrightarrow9x^2-6x+1+16x^2+40x+25=25x^2-70x+49\)

\(\Leftrightarrow25x^2+34x+26-25x^2+70x-49=0\)

\(\Leftrightarrow104x-23=0\)

\(\Leftrightarrow104x=23\)

hay \(x=\frac{23}{104}\)

Vậy: \(S=\left\{\frac{23}{104}\right\}\)

b) Ta có: \(\left(x-2\right)^3+\left(x+2\right)^3=2\left(x-3\right)\left(x^2+3x+9\right)\)

\(\Leftrightarrow\left(x-2+x+2\right)\left[\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\right]=2\left(x^3-27\right)\)

\(\Leftrightarrow2x\cdot\left(x^2-4x+4-x^2+4+x^2+4x+4\right)=2x^3-54\)

\(\Leftrightarrow2x\cdot\left(x^2+12\right)-2x^3+54=0\)

\(\Leftrightarrow2x^3+24x-2x^3+54=0\)

\(\Leftrightarrow24x=54\)

hay \(x=\frac{9}{4}\)

Vậy: \(S=\left\{\frac{9}{4}\right\}\)

c) Ta có: \(2014x-10.07=20.14x-1007\)

\(\Leftrightarrow2014x-10.07-20.14x+1007=0\)

\(\Leftrightarrow1993.86x+1017.07=0\)

\(\Leftrightarrow1993.86x=-1017.07\)

\(\Leftrightarrow x=-\frac{101}{198}\)

Vậy: \(S=\left\{-\frac{101}{198}\right\}\)

d) Ta có: \(\frac{x-5}{2}+\frac{x-5}{3}-\frac{1}{4}=\frac{1}{2}+\frac{1}{3}-\frac{x-5}{4}\)

\(\Leftrightarrow\frac{x-5}{2}+\frac{x-5}{3}+\frac{x-5}{4}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow x-5=1\)

hay x=6

Vậy: S={6}