Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xéttứ giác OAIB có
góc OAI+góc OBI=180 độ
=>OAIB là tứ giác nội tiếp đường tròn đường kính OI(1)
ΔOHI vuông tại H
nên H nằm trên đường tròn đường kính OI(2)
Từ (1), (2) suy ra O,A,I,B,H cùng nằm trên 1 đường tròn
b: Xet (O) có
IA,IB là tiếp tuyến
nên IA=IB
mà OA=OB
nên OI là trung trực của AB
=>OI vuông góc AB tại P
=>OP*OI=OA^2=OD^2
a, Xét tứ giác MEOF có \(\widehat{MEO}=\widehat{MFO}=90^0\)
=> Tứ giác MEOF nội tiếp (t/c)
=> 4 điểm M,E,O,F cùng thuộc đường tròn đường kính MO (1)
Xét tứ giác AFOM có : \(\widehat{MAO}=\widehat{MFO}=90^0\)
=> Tứ giác AFOM nội tiếp (t/c)
=> 4 điểm M,A,O,F cùng thuộc đường tròn đường kính MO (2)
Từ (1) và (2) => Năm điểm A, M, E, O, F cùng thuộc đường tròn đường kính MO
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD
\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp
Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp
\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn
2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi
có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông
AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB
Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)
\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)
\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)
3) OH cắt AB tại F
Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp
\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)
mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)
mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định