K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác ADMO có:}\)

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)

=>(AOD = \(\frac{1}{2}\)∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = \(\frac{1}{2}\)∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB

=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)

Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)

\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

19 tháng 2 2022

loading...  

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Đường thẳng tiếp xúc với đường tròn tại C cắt AD tại E

=>EC là tiếp tuyến tại C của đường tròn

=>EC\(\perp\)OC tại C

Xét tứ giác EAOC có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

nên EAOC là tứ giác nội tiếp

=>E,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=\left(2R\right)^2=4R^2\)

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

Ta có: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

c: ΔOBC cân tại O

mà OF là đường cao

nên OF là phân giác của góc BOC

OC\(\perp\)CE tại C

mà C\(\in\)EF

nên OC\(\perp\)CF tại C

Xét ΔOCF và ΔOBF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>BF là tiếp tuyến của (O;R)

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2